ETH-RELAIS-8

0 customer reviews

 171,96

Desined-in-Germany

OUR PROMISE TO YOU:


 
Our advantages

New feature!

Extended input filter for Digital-IN / Timeout protection function for Digital-Out.
For more information, see the Description and Technical Data tabs!

Availability: Out of stock SKU: ETH-RELAIS-8 Categories: ,

Out of stock

The ETH-RELAIS-8 is a compact 10/100Mbit Ethernet module with 8 relay outputs for low switching capacities up to max. 1 A. Four DIP switches simplify the network configuration and a number of status LEDs visualize the switching states of the relays. The connection wiring is done via two 8-pole plug-in screw terminals.

  • 8 relay outputs (NO contact), galvanically isolated
  • Max. Switching current: 1A
  • Ethernet connection with 10/100 Mbit
  • Timeout protection function
  • 10 status LEDs
  • Top hat rail mounting

Relay outputs

Reed relays with normally open (NO) function are used in this product. They are suitable for smaller switching capacities and achieve well over 100 million switching cycles. The electrical isolation between input and output circuit is up to 1.5kV.


 

Fail-safe mode

The fail-safe mode is a safety function in which the DEDITEC module switches to a previously configured, safe switching state in the event of a connection failure.
This is intended to prevent connected installations or systems from continuing to run in an uncontrolled manner.

 

Three switching states can be defined for each digital output: a) Switched off, b) Switched on or c) Unchanged.

 

The fail-safe circuit is triggered by a timeout protection function. If the control unit no longer receives any commands from the control PC within a previously defined period of time, the timeout function comes into effect. The cause of a timeout can be a loss of connection between the control PC and the DEDITEC control system or failure of the control PC.

 

Timeout modes

Three timeout modes are available:

 

A) “Normal mode” is valid once and must be reactivated manually by software command after each timeout event. The customer application still has access to all controller outputs.

 

B) In “Auto reactivate mode”, the timeout function is automatically reactivated after communication with the control PC has been re-established. The customer application still has access to all outputs of the control unit.

 

C) The “Secure outputs mode” blocks access to the outputs after the timeout event. Unlocking can only be carried out by software command. This is an important safety aspect


LEDs

Each digital input and output has a separate LED that lights up when the signal state is active. Furthermore, the status of the operating voltage, the communication with the interface, error events or the occurrence of a timeout can be displayed.


Software and control

Our DELIB driver library, which is included with the product, makes it easy to address the product via our API.

 

We offer support for the following programming languages:

  • C
  • C++
  • C#
  • VB
  • VBA
  • VB.Net
  • Java
  • Delphi
  • LabVIEW

We offer support for the following operating systems:

  • Windows 10 (32bit/64bit)
  • Windows 8/8.1 (32bit/64bit)
  • Windows 7 (32bit/64bit)
  • Windows Vista (32bit/64bit)
  • Windows XP (32bit/64bit)
  • Windows Server 2003 (32bit/64bit)
  • Windows 2000
  • Linux

Corresponding programming examples can be found in the “Software” section of the products or are included on the driver CD.


Remote switching of IP modules

Our IP modules can be conveniently and easily controlled from home anywhere in the world via the TCP-IP network. The following free options are available to you for this purpose.

 

ICT-Tool:

Our ICT-Tool is included in the DEDITEC driver library. With the help of this software, you can configure, control and test your DEDITEC modules.

 

DEDITEC I/O-Control App:

Configure your DEDITEC modules easily via smartphone. With our DEDITEC I/O Control app, our modules can also be controlled while on the move.

 

Weboberfläche:

Our IP modules can be operated from any browser. All you need is the IP address of the module.


General

Supply voltage +12V to 24V DC
Display LEDs • One LED per output channel
• Ethernet activity
• Module Status
Connectors • Type: Weidmüller / 1950640000
• Pluggable (protected against mismating)
• Connection for all conductor types from 0.2mm² to 4mm²
• Screw flange
Operating temperature +10°C to +50 °C
Dimensions 94 mm x 88 mm x 55 mm (L x W x H)

Digital outputs

Timeout-Protection-Function • Simple and uncomplicated setting of the timeout protection function possible via software
• Time-definable automatic activation of the timeout protection function in the
Timeout case (between 0.1 seconds and 6553 seconds)
• In the timeout case, digital outputs can be activated, deactivated or left unchanged
• 3 different timeout modes: “normal”, “auto reactive” and “secure outputs” for different procedures in case of a timeout event.
In “secure outputs” timeout mode, access to the outputs is blocked after a timeout event, thus preventing further access to the outputs.
Unlocking must be done by an additional software command.

Ethernet Interface

Interface • 10/100 Mbit Ethernet
• Konfiguration über das DELIB Configuration Utility (IP-Adr., Netzmaske …)
IP-Adresse • DHCP or static
DIP switch • DHCP ON/OFF
• EEPROM write protection ON/OFF
• BOOT with EEPROM ON/OFF
• SERVICE Mode ON/OFF
Access time • 0.7 ms average time for 32-bit accesses

Relay outputs type I *

Relay up to 1A • Typ: DIP05-1A72-12L
• Property: Normally open contact (NO)
• Max. switching voltage: 36V AC / DC
• Max. switching current: 0.5 A AC / DC
• Max. Transport current: 1A AC / DC
• Max. switching capacity: 10 W
• Galvanic isolation between contact and coil: 1.5 kV RMS /1 min
• Lifetime: up to 100 million switching cycles
* This relay type is only installed in variants with up to 8 I/Os

Additional information

Weight 0,112 kg

Configuration

Configuration of Ethernet modules

Modules with a 10/100 Mbit Ethernet interface can be connected directly to a PC or to a network LAN. The following options are available for configuration:

 

1. ICT-Tool

With the ICT-Tool you can not only configure your Ethernet module quickly and easily, you can also view all important module information at just one glance.

 

  • Module-Name
  • Module-ID
  • Firmware-Revision

Identification

Identify your currently addressed module with the help of LEDs located on the board. This is especially helpful if several modules are in operation at the same time.

 


LAN network information

All important LAN network information at a glance. On this information page, you will find the current LAN settings of your module.

 


LAN Network configuration

Integrate your module into the home or company network with just a few clicks or control it directly via a 1-to-1 connection. The following module information can be queried and changed with the ICT-Tool

 

  • Board Name
  • Network protection
  • DHCP on/off
  • IP-Address
  • Net mask
  • Std. Gateway
  • TCP-Port

TCP encryption

Here you can make settings for the encryption of your module.
The following configurations can be made.

 

  • Allow unencrypted protokol on/off
  • Allow user-encrypted protocol on/off
  • User-encryption password
  • Allow admin-encrypted protocol on/off
  • Admin-encryption password</li
  • Allow I/O access via webinerface on/off</li

NTP configuration

You can make changes to the NTP service here.
The following configurations can be made.

 

  • NTP service on/off
  • Server
  • Port
  • Timezone

2. Web interface

The Ethernet module has its own web server that can be used to change the following parameters:

 

  • IP address
  • Netmask
  • Std. Gateway
  • DNS Server

Click here to download the latest driver library.

DELIB driver library

You can find more details on control and some programming examples in the programming section.

General Handling

DapiOpenModule
This function opens a particular module.

DapiOpenModule

 

Description

This function opens a specific module

 

Definition

ULONG DapiOpenModule(ULONG moduleID, ULONG nr);

 

Parameters

moduleID=Specifies the module to be opened (see delib.h)
nr=Specifies which one (in case of several modules) should be opened.
nr=0 -> 1st module
nr=1 -> 2nd module

 

Return-Value

handle=Corresponding handle for the module
handle=0 -> module was not found

 

Comment

The handle returned by this function is needed to identify the module for all other functions.

 

Programming example

// Open USB module
handle = DapiOpenModule(RO_USB1, 0);
printf(“handle = %x\n”, handle);
if (handle==0)
{
// USB module was not found
printf(“Modul konnte nicht geöffnet werden\n”);
return;
}

DapiCloseModule
This command closes an opened module.

DapiCloseModule

 

Description

This command closes an open module.

 

Definition

ULONG DapiCloseModule(ULONG handle);

 

Parameters

handle=This is the handle of an open module

 

Return-Value

None

 

Programming example

// Close module
DapiCloseModule(handle);

DapiGetLastError
This function returns the last registered error. If an error has occurred, it must be deleted with DapiClearLastError(), otherwise any call of DapiGetLastError() will return the "old" error. If multiple modules are used, the use of DapiGetLastErrorByHandle() is recommended.

DapiGetLastError

 

Description

This function returns the last detected error. If an error occurred, it must be cleared with DapiClearLastError(), otherwise any call to DapiGetLastError() will return the “old” error.
If more than one module should be used, it is recommended to use DapiGetLastLastErrorByHandle().

 

Definition

ULONG DapiGetLastError(void);

 

Parameters

None

 

Return-Value

Error Code
0=no error. (see delib_error_codes.h)

 

Programming example

BOOL IsError()
{
unsigned char msg[500];
unsigned long error_code = DapiGetLastError();

if (error_code != DAPI_ERR_NONE)
{
DapiGetLastErrorText((unsigned char*) msg, sizeof(msg));
printf(“Error Code = 0x%x * Message = %s\n”, error_code, msg);

DapiClearLastError();

return TRUE;
}

return FALSE;
}

DapiGetLastErrorByHandle
This function returns the last registered error of a particular module (handle). If an error has occurred, it must be deleted with DapiClearLastErrorByHandle(), otherwise any call of DapiGetLastErrorByHandle() will return the "old" error.

DapiGetLastErrorByHandle

 

Description

This function returns the last detected error of a specific module (handle). If an error occurred, it must be cleared with DapiClearLastErrorByHandle(), otherwise any call to DapiGetLastErrorByHandle() will return the “old” error.

 

Definition

ULONG DapiGetLastErrorByHandle(ULONG handle);

 

Parameters

handle=This is the handle of an open module

 

Return-Value

Error Code
0=no error. (see delib_error_codes.h)

 

Programming example

BOOL IsError(ULONG handle)
{
unsigned long error_code = DapiGetLastErrorByHandle(handle);

if (error_code != DAPI_ERR_NONE)
{
printf(“Error detected on handle 0x%x – Error Code = 0x%x\n”, handle, error_code);

DapiClearLastErrorByHandle(handle);

return TRUE;
}

return FALSE;
}

DapiGetLastErrorText
This function reads the text of the last registered error. If an error has occurred, it must be cleared with DapiClearLastError(), otherwise every call of DapiGetLastErrorText() returns the "old" error. Definition

DapiGetLastErrorText

 

Description

This function reads the text of the last detected error. If an error occurred, it must be cleared with DapiClearLastError(), otherwise any call to DapiGetLastErrorText() will return the “old” error.

 

Definition

ULONG DapiGetLastErrorText(unsigned char * msg, unsigned long msg_length);

 

Parameters

msg = Buffer for the text to be received
msg_length = Length of the text buffer

 

Programming example

BOOL IsError()
{
unsigned char msg[500];
unsigned long error_code = DapiGetLastError();

if (error_code != DAPI_ERR_NONE)
{
DapiGetLastErrorText((unsigned char*) msg, sizeof(msg));
printf(“Error Code = 0x%x * Message = %s\n”, error_code, msg);

DapiClearLastError();

return TRUE;
}

return FALSE;
}

DapiClearLastError
This function deletes the last error registered with DapiGetLastError().

DapiClearLastError

Description

This function deletes the last error registered with DapiGetLastError().

 

Definition

void DapiGetLastError(void);

 

Parameters

None

 

Return value

None

 

Example program

BOOL IsError()
{
unsigned char msg[500];
unsigned long error_code = DapiGetLastError();

if (error_code != DAPI_ERR_NONE)
{
DapiGetLastErrorText((unsigned char*) msg, sizeof(msg));
printf(“Error Code = 0x%x * Message = %s\n”, error_code, msg);

DapiClearLastError();

return TRUE;
}

return FALSE;
}

DapiClearLastErrorByHandle
This function deletes the last error of a particular module (handle), which was registered with DapiGetLastErrorByHandle().

DapiClearLastErrorByHandle

 

Description

This function deletes the last error of a particular module (handle), which was registered with DapiGetLastErrorByHandle().

 

Definition

void DapiClearLastErrorByHandle(ULONG handle);

 

Parameters

handle=This is the handle of an opened module.

 

Return value

None

 

Example program

BOOL IsError(ULONG handle)
{
unsigned long error_code = DapiGetLastErrorByHandle(handle);

if (error_code != DAPI_ERR_NONE)
{
printf(“Error detected on handle 0x%x – Error Code = 0x%x\n”, handle, error_code);

DapiClearLastErrorByHandle(handle);

return TRUE;
}

return FALSE;
}

DapiGetDELIBVersion
This function returns the installed DELIB version.

DapiGetDELIBVersion

 

Description

This function returns the installed DELIB version.

 

Definition

ULONG DapiGetDELIBVersion(ULONG mode, ULONG par);

 

Parameters

mode=Mode with which the version is read (must always be 0).
par=This parameter is not defined (must always be 0).

 

Return-Value

version=Version number of the installed DELIB version [hex]

 

Programming example

version = DapiGetDELIBVersion(0, 0);
//With installed version 1.32 version = 132(hex)

DapiOpenModuleEx
This function opens a specific module with ethernet interface.The particularity of this command is,that parameters like IP-address, portnumber and the duration of the timeout can be specified. The opening of the module is independent of the DELIB Configuration Utility settings.

DapiOpenModuleEx

 

Description

This function specifically opens a module with an Ethernet interface. The parameters IP address, port number and the duration of the timeout can be determined.

 

Definition

ULONG DapiOpenModuleEx(ULONG moduleID, ULONG nr, unsigned char* exbuffer, 0);

 

Parameters

moduleID = Specifies the module to be opened (see delib.h)
nr = Specifies which one (in case of several modules) is to be opened
nr = 0 -> 1st module
nr = 1 -> 2nd module
exbuffer = buffer for IP address, port number and duration of the timeout

 

Return-Value

handle = Corresponding handle for the module
handle = 0 -> module was not found

 

Comment

The handle returned by this function is required to identify the module for all other functions.
This command is supported by all modules with Ethernet interface.

 

Programming example

// Open ETH-Module with parameter

DAPI_OPENMODULEEX_STRUCT open_buffer;

strcpy((char*) open_buffer.address, “192.168.1.10”);
open_buffer.portno = 0;
open_buffer.timeout = 5000;

handle = DapiOpenModuleEx(RO_ETH, 0, (unsigned char*) &open_buffer, 0);
printf(“Module handle = %x\n”, handle);

Digital output functions

DapiDOSet1
This is the command to set a single output.

DapiDOSet1

 

Description

This command sets a single output.

 

Definition

void DapiDOSet1(ULONG handle, ULONG ch, ULONG data);

 

Parameters

handle=This is the handle of an open module
ch= Specifies the number of the output to be set (0 .. )
data= Specifies the data value to be written (0 / 1)

 

Return-Value

None

 

Requirements

The following SW feature bits must be supported by the module:

 

DAPI_SW_FEATURE_BIT_CFG_DO

The following conditions for the transfer parameters must be met:

maxCh = DapiSpecialCommand(handle, DAPI_SPECIAL_CMD_GET_MODULE_CONFIG, DAPI_SPECIAL_GET_MODULE_CONFIG_PAR_DO, 0, 0)
maxCh > ch

DapiDOSet8
This command sets 8 digital outputs simultaneously.

DapiDOSet8

 

Description

This command sets 8 digital outputs simultaneously.

 

Definition

void DapiDOSet8(ULONG handle, ULONG ch, ULONG data);

 

Parameters

handle=This is the handle of an open module
ch= Specifies the number of the output from which writing is to start (0, 8, 16, 24, 32, ..)
data=Specifies the data values to be written

 

Return-Value

None

DapiDOSet16
This command sets 16 digital outputs simultaneously.

DapiDOSet16

 

Description

This command sets 16 digital outputs simultaneously.

 

Definition

void DapiDOSet16(ULONG handle, ULONG ch, ULONG data);

 

Parameters

handle=This is the handle of an open module
ch= Specifies the number of the output from which writing is to start (0, 16, 32, ..)
data=Specifies the data values to be written

 

Return-Value

None

DapiDOSet32
This command sets 32 digital outputs simultaneously.

DapiDOSet32

 

Description

This command sets 32 digital outputs simultaneously.

 

Definition

void DapiDOSet32(ULONG handle, ULONG ch, ULONG data);

 

Parameters

handle=This is the handle of an open module
ch= Specifies the number of the output from which writing is to start (0, 32, 64, ..)
data=Specifies the data values to be written

 

Return-Value

None

 

Programming example

// Write a value to the outputs
data = 0x0000ff00; // outputs 9-16 are set to 1
DapiDOSet32(handle, 0, data); // Chan Start = 0
printf(“Write to outputs data=0x%x\n”, data);
printf(“key for further\n”);
getch();
// —————————————————-
// Write a value to the outputs
data = 0x80000000; // Output 32 is set to 1
DapiDOSet32(handle, 0, data); // Chan Start = 0
printf(“Write to outputs data=0x%x\n”, data);
printf(“key for further\n”);
getch();
// —————————————————-
// Write a value to the outputs
data = 0x80000000; // Output 64 is set to 1
DapiDOSet32(handle, 32, data); // Chan Start = 32
printf(“Write to outputs data=0x%x\n”, data);
printf(“key for further\n”);
getch();

DapiDOSet64
This command is to set 64 digital outputs.

DapiDOSet64

 

Description

This command sets 64 digital outputs simultaneously.

 

Definition

void DapiDOSet64(ULONG handle, ULONG ch, ULONGLONG data);

 

Parameters

handle=This is the handle of an open module
ch= Specifies the number of the output from which writing is to start (0, 64, ..)
data=Specifies the data values to be written

 

Return-Value

None

DapiDOClrBit32
With this command you can change the states of outputs to 0 without changing the states of the neighboring outputs.

DapiDOClrBit32

 

Description

This command can be used to switch outputs selectively to 0 without changing the states of adjacent outputs.

 

Definition

void DapiDOClrBit32(uint handle, uint ch, uint data);

 

Parameters

handle = This is the handle of an open module
ch = Specifies the number of the output from which writing is to start
data = Specifies the data value to be written (up to 32 bits)

 

Return-Value

None

 

Comment

Only the bits with a value of 1 in the data parameter are considered by the command.

 

Programming example

data = 0x1; // Output 0 would be changed to 0. The states of outputs 1-31 won’t be changed
DapiDOSetBit32(handle, 0, data);

data = 0xf; // Outputs 0-3 would be changed to 0. The states of outputs 4-31 won’t be changed
DapiDOSetBit32(handle, 0, data);

data = 0xff; // Outputs 0-7 would be changed to 0. The states of outputs 8-31 won’t be changed
DapiDOSetBit32(handle, 0, data);

data = 0xff000000; // Outputs 23-31 would be changed to 0. The states of outputs 0-21 won’t be changed
DapiDOSetBit32(handle, 0, data);

DapiDOSet1_WithTimer
This function sets a digital output (ch) to a value (data - 0 or 1) for a specified time in msec.

DapiDOSet1_WithTimer

 

Description

This function sets a digital output (ch) to a value (data – 0 or 1) for a certain time in ms.

 

Definition

void DapiDOSet1_WithTimer(ULONG handle, ULONG ch, ULONG data, ULONG time_ms);

 

Parameters

handle=This is the handle of an open module
ch= Specifies the number of the output to be set (0 .. )
data= Specifies the data value to be written (0 / 1)
time_ms=Specifies the time in which the output is set [ms].

 

Return-Value

None

 

Comment

This command is supported by all output modules of the NET series as well as by our RO-O8-R8 module.
This command loses its validity if it is overwritten with other values.
If you want to deactivate the command, it must be overwritten with time_ms=0.

 

Programming example

DapiDOSet1_WithTimer(handle, 2, 1, 1000);
//Setting channel 2 for 1000msec to 1

DapiDOSetBit32
With this command you can change the states of outputs to 1 without changing the states of the neighboring outputs.

DapiDOSetBit32

 

Description

This command can be used to switch outputs selectively to 1 without changing the states of adjacent outputs.

 

Definition

void DapiDOSetBit32(uint handle, uint ch, uint data);

 

Parameters

handle = This is the handle of an open module
ch = Specifies the number of the output from which writing is to start
data = Specifies the data value to be written (up to 32 bits)

 

Return-Value

None

 

Comment

Only the bits with a value of 1 in the data parameter are considered by the command.

 

Programming example

data = 0x1; // Output 0 would be changed to 1. The states of outputs 1-31 won’t be changed
DapiDOSetBit32(handle, 0, data);

data = 0xf; // Outputs 0-3 would be changed to 1. The states of outputs 4-31 won’t be changed
DapiDOSetBit32(handle, 0, data);

data = 0xff; // Outputs 0-7 would be changed to 1. The states of outputs 8-31 won’t be changed
DapiDOSetBit32(handle, 0, data);

data = 0xff000000; // Outputs 23-31 would be changed to 1. The states of outputs 0-21 won’t be changed
DapiDOSetBit32(handle, 0, data);

DapiDOReadback32
This command reads back the 32 digital outputs.

DapiDOReadback32

 

Description

This command reads back the 32 digital outputs.

 

Definition

ULONG DapiDOReadback32(ULONG handle, ULONG ch);

 

Parameters

handle=This is the handle of an open module
ch= Specifies the number of the output from which the read back is to be performed (0, 32, 64, ..)

 

Return-Value

Status of 32 outputs.

DapiDOReadback64
This command reads the current PWM frequency of the module

DapiDOReadback32

 

Description

This command reads back the 32 digital outputs.

 

Definition

ULONG DapiDOReadback32(ULONG handle, ULONG ch);

 

Parameters

handle=This is the handle of an open module
ch= Specifies the number of the output from which the read back is to be performed (0, 32, 64, ..)

 

Return-Value

Status of 32 outputs.

Web Interface – Interface

All DEDITEC Ethernet modules have a web interface that allows you to make settings conveniently via your web browser and also gives you direct access to the I/Os.

This allows you to access the product with a smartphone, tablet or even a PC via a browser.

The following I/O units are supported:

 

  • Digital inputs
  • Digital inputs (counter function)
  • Digital outputs
  • Analog inputs (voltage & current)
  • Analogue outputs (voltage & current)
  • PT100 temperature detection
  • Stepper motor control

You can protect the Ethernet module against unauthorized access with a user system and optional encryption system.

General

Start page of the web interface. The navigation on the left side gives you access to various setting options.

Network configuration

All network settings can be made directly via the web interface.

Usermanager

Here you can define the user name and password for access to the web interface. If the user is inactive, he/she is automatically logged out after the session time has expired.

Status / Reboot

Version of the installed firmware. Functions for restarting and resetting the settings.

Security

In addition to a user/password system for the web interface, we also offer you the option of encrypting the entire network communication. Access to the I/Os can also be blocked.

Supported I/Os

In the following we show you the supported I/Os that you can operate via the web interface.

Digital Inputs

The picture shows the overview of the digital inputs. You can switch between several inputs via the drop-down menu. The column ‘State’ shows whether a signal is present at the input.

Digital Inputs Counter

Our digital inputs have a counting function. The counter reading can be read and reset via the web interface.

Digital Outputs

The digital outputs can be switched via an on/off button. The current status of the outputs can be read back via the ‘Readback’ column.

Analogue Inputs

Current and voltage can also be read out via the web interface. The desired operating mode can be set via the A/D Mode drop-down menu.

Analogue Outputs

Analogue signals can also be output via the web interface. The desired D/A mode can be set via the drop-down menu, as with the analog inputs. The desired value can be written to the outputs using the ‘SET’ button. The column ‘Readback’ shows the current voltage/current output of the D/A converter.

Temperature measurement (PT100)

The temperature measurement is supported by our RO series.

 

PT100

The current temperature can be read. If no sensor is connected to the channel, this is signalled with ‘disconnected’.

Stepper-Motor Control

The position and speed of the stepper motor can be set via the control elements. The status window shows the current position, temperature and power supply.

I/O Control APP for Android™

 

Get it on Google Play

 

 

 

Control the digital and analog I/Os of our Ethernet modules from on the road. With the DEDITEC I/O control Android App, any network-compatible Android device can be remotely controlled for DEDITEC products with Ethernet interface

 

Features:

  • Separate storage of network settings for private and public networks
  • Better clarity through configurable I/O names
  • Configurable refresh of all I/Os

The following I/Os are supported:

  • up to 128 analog inputs (0..10V, 0..5V, +/- 10V and +/- 5V)
  • up to 64 analog outputs (0..10V, 0..5V, +/- 10V and +/- 5V)
  • up to 128 digital inputs and outputs

Network settings
A configuration for private (WLAN) or public (Internet) networks can be created and saved in the network settings.


Module configuration

At the module configuration you see the number of connected I/O modules.

You can also select here which I/Os are to be controlled.


Digital inputs
The digital inputs are scanned at an adjustable interval.


Digital outputs
In the area of the digital outputs the channels can be switched on or off individually.

It is also possible to switch all channels on or off.


Analogue inputs
For the analog inputs you can select from the measuring ranges 0..10V, 0..5V, +/- 10V or +/- 5V.

The A/D channels are scanned automatically at an adjustable interval.


Analogue outputs
Here you may set analog outputs in the measuring range 0..10V, 0..5V, +/- 10V or +/- 5V.


Settings
This picture shows the settings for analog outputs. Each channel can be given a name here.

It can also be defined here whether and at what interval the analog outputs are read back.

These settings are available for all I/Os.

 

Connection example Relay

Connection example

Manual

Manual ETH-RELAIS-8/ETH-OPTOIN-8
Hard- and Software-description
Download

DELIB driver library

Manual of the DELIB driver library
Documentation of all functions for the driver library
Download
  • Windows 10, 8, Vista, 7, XP, 2000 andLinux
  • Moduel open/close functions
  • Digital inputs: reading 1 / 8 / 16 / 32 / 64 bit
  • Digital outputs: Write 1 / 8 / 16 / 32 / 64 bit
  • A/D Lesen: read, read_volt, read_mA, A/D Modus einstellen
  • D/A schreiben: write, write_volt, write_mA, D/A-Modus einstellen
DELIB (64-bit) driver library for Windows
For Windows 11/10, Windows 7, Windows 8, Vista, XP and 2000
Download

Installation file for the 64 bit DELIB driver library.

The following operating systems are supported:

64 bit

  • Windows 11/10 x64
  • Windows 7 x64
  • Windows 8 x64
  • Windows Server 2012 x64
  • Windows Server 2008 x64
  • Windows Vista x64
  • Windows XP x64
  • Windows Server 2003 x64

Included software

  • DT-Flasher x64
    Software to update DEDITEC module to the latest version
  • DELIB Configuration Utility x64
    Set configuration of module addresses
  • DELIB Module Config x64
    Configuration of module-specific settings
  • CAN Configuration Utility x64
    Set configuration of CAN modules
  • DELIB Module Demo x64
    Enables manual switching of a module
  • DELIB Command Line Interface x64
    Enables the execution of DELIB commands in the command line
  • Watchdog Configuration Utility x64
    Set configuration of a watchdog stick
DELIB (32-bit) driver library for Windows
For Windows 11/10, Windows 7, Windows 8, Vista, XP and 2000
Download

Installation file for the 32-bit version of the DELIB driver library.

The following operating systems are compatible:
32-Bit

    • Windows 11/10
    • Windows 7
    • Windows 8
    • Windows Server 2012
    • Windows Server 2008
    • Windows Vista
    • Windows XP
    • Windows Server 2003

64-Bit

  • Windows 10 x64
  • Windows 7 x64
  • Windows 8 x64
  • Windows Server 2012 x64
  • Windows Server 2008 x64
  • Windows Vista x64
  • Windows XP x64
  • Windows Server 2003 x64

Included software

  • DT-Flasher
    Software to update DEDITEC module to the latest version
  • DELIB Configuration Utility
    Set configuration of module addresses
  • DELIB Module Config
    Configuration of module-specific settings
  • CAN Configuration Utility
    Set configuration of CAN modules
  • DELIB Module Demo
    Enables manual switching of a module
  • DELIB Command Line Interface
    Enables the execution of DELIB commands in the command line
  • Watchdog Configuration Utility
    Set configuration of a watchdog stick

Attention:

With this version of the driver library, only 32-bit applications can be created, which can then be run on 32- and 64-bit systems.

DELIB driver library for Linux (32/64-bit)
For 32/64-bit Linux distributions starting with kernel 2.6.x
Download

DELIB driver library for Linux distributions (32/64-bit) starting with kernel 2.6.x

This driver package includes the following components:

  • DELIB USB driver
  • DELIB Ethernet driver
  • DELIB CLI

DELIB USB driver

Supports the following products:

  • NET-Series (via USB interface)
  • RO-USB-Series
  • BS-USB-Series
  • USB-Mini-Sticks
  • USB-Watchdog
  • USB-OPTION-8 / USB-RELAIS-8
  • USB-TTL-32 / USB-TTL-64

Note:

With the standard USB driver, you can access several USB products with different module IDs (for example one RO-USB and one USB-OPTOIN-8). Therefore, no additional driver installation is required.

If you want to access several USB products with the same module ID (for example one USB-OPTOIN-8 and one USB-RELAIS-8), you have to install additionally the Linux FTDI driver. The FTDI driver can be found at http://www.ftdichip.com.

 

DELIB Ethernet driver

Supports the following products:

  • NET-Series (via Ethernet Interface)
  • RO-ETH-Series
  • RO-ETH/LC-Series
  • BS-ETH-Serie
  • ETH-OPTION-8 / ETH-RELAIS-8
  • ETH-TTL-64

DELIB CLI

With the DELIB CLI (Command Line Interface) for Linux it is possible so controll all I/O’s over the command-line.

 

DELIB - Sample-Sources - Installer (approx. 10 MB)
Sample programs for different programming languages (Also in DELIB Setup included)
Download

Sample programs for different programming languages (Also in DELIB Setup included)

  • C (Microsoft Visual C++ 6.0, Borland C)
  • C++ (Microsoft Visual C++ 6.0)
  • C# (Microsoft Visual C# 2008 to 2015)
  • Delphi (Borland Delphi 7)
  • VB (Microsoft Visual Basic 6.0)
  • VB.NET (Microsoft Visual Basic 2008 to 2015)
  • Java (Java native interface)
  • Java.dll (Ethernet protocol for ethernet products)

 

Download

Hardware-Updates (Firmware)
Flash files for the DT-Flasher
Download

The flash files can also be downloaded directly in the DT-Flasher.

This package contains firmware files for the following products:

STARTER-series:

  • USB-MINI-Sticks
  • USB-8-er Opto/Relay
  • Ethernet 8-er Opto/Relay
  • USB-TTL I/O
  • Ethernet-TTL I/O

BS-series:

  • BS-CAN Module
  • BS-ETH Module
  • BS-USB Module
  • BS-SER Module

RO-series Interfaces:

  • RO-USB
  • RO-SER
  • RO-ETH
  • RO-ETH/LC
  • RO-CAN

RO-series I/Os:

  • AD / DA Module
  • CNT8 / CNT-IGR
  • O8-R8 Time module
  • PT100
  • Stepper2

Development accessories

  • USB Controller 8
  • USB Watchdog Stick

DEDITEC driver CD

DEDITEC Driver CD with many helpful tools and manuals for commissioning your DEDITEC products.

  • DELIB driver library for Windows
  • Test and configuration software
  • Manuals
  • Data sheets
  • Example programs for C++, C#, VB, VB.Net, Delphi, LabVIEW

2 pin plug connector

Allows the power supply to be connected to the DEDITEC module

  • Type: Phoenix Contact 1783287
  • 100 % malfunction protected
  • For all conductor types from 0.2mm² to 2.5mm²

8 pole connector black

Allows you to connect your application to the DEDITEC module.

  • Type: Weidmüller / 1950640000
  • 100 % misplugged protected
  • For all wire types from 0.2mm² to 4mm²

8-times relay powermodule (switching capacity 40V/10A), which can be controlled by relays/opto-couplers

The MOD-REL8_10A has eight changeover relays with a switching capacity of 48V/10A AC or 30V/8A DC. It can be used as additional power stage for our digital output modules. The normally open contacts of a digital output module, e.g. a RO-USB-REL16, are simply connected in parallel to the inputs of this power stage. Additionally this module requires a power supply of 24V DC.

  • Power stage for all digital output modules
  • 8 change-over contact relay (CO) / 48V / 10A AC or. 30V / 8A DC
  • 24V power supply
  • Pluggable terminal strips for the connection wiring
  • Potential-free inputs (no control voltage required)

USB watchdog stick with 2 relays for shift operations

[ref type="prod-group-kurzbeschr-converter"]

This USB-WATCHDOG-STICK monitors your operating PC or server and can reset the hardware independently in case of a program crash. Simply integrate the function of the Watchdog Stick into your application. As soon as a timeout occurs and the watchdog stick is no longer periodically reset, the two relay outputs are switched through. With an appropriate connection cabling, for example, the PC reset could be activated, an external SMS modem can send warnings or a connected siren signals an alarm. With the help of our free configuration tool, you can define how the relays should switch in case of an error.

  • USB 2.0 / USB 1.1 interface
  • Watchdog function
  • Monitoring your control PC or server
  • Timeout times adjustable from 10ms to 10h
  • Windows Watchdog API
  • 2 NO contact relay (NO)
  • Connection cable with DSUB9 socket (approx. 1.8m)

12V din rail relay

PLC interface for limiting continuous currents up to 10A, consisting of basic terminal with screw connection and pluggable miniature relay. Mountable on NS 35/7.5 mounting rail.

  • Nominal voltage: 230V AC / 220V DC
  • Switching voltage: 250 V AC/DC
  • 1 changeover contact
  • Reverse polarity protection, freewheeling diode
  • LED for voltage indication
  • Phoenix Contact, 2967617, PLC-RSC- 12DC/21HC

24V din rail relay

PLC interface for limiting continuous currents up to 10A, consisting of basic terminal with screw connection and pluggable miniature relay. Mountable on NS 35/7.5 DIN rail.

  • Nominal voltage: 24V AC/DC
  • Switching voltage: 250 V AC/DC
  • 1 changeover contact
  • Reverse polarity protection, freewheeling diode
  • LED for voltage indication
  • Phoenix Contact, 2967633, PLC-RSC- 24UC/21HC

2 pin plug connector

Allows the power supply to be connected to the DEDITEC module

  • Type: Phoenix Contact 1783287
  • 100 % malfunction protected
  • For all conductor types from 0.2mm² to 2.5mm²

8 pole connector black

Allows you to connect your application to the DEDITEC module.

  • Type: Weidmüller / 1950640000
  • 100 % misplugged protected
  • For all wire types from 0.2mm² to 4mm²

DIN Rail

Top-hat rail for mounting our control technology modules.

  • Top-hat rail according to DIN EN 50022
  • Type: Phoenix Contact / 1208131
  • Dimensions in mm: 450 x 35 x 7.5 (L x W x D)

Reviews

There are no reviews yet.

Be the first to review “ETH-RELAIS-8”

Your email address will not be published. Required fields are marked *