NET-DEV module with 16 optocoupler inputs

0 customer reviews

 288,58

Desined-in-Germany

OUR PROMISE TO YOU:


 
Our advantages

New feature!

Extended input filter for Digital-IN / Timeout protection function for Digital-Out.
For more information, see the Description and Technical Data tabs!

Availability: In Stock SKU: NET-DEV-OPTO-IN16 Category:

The NET-DEV-OPTO-IN16 module has 16 digital inputs to detect voltage levels from +5V to +50V AC /DC. It serves as an extension possibility for the NET-CPU basic modules and is integrated into an existing NET system by means of Plug’n Play plug connection (DIN Rail-Bus).

  • 16 digital inputs: 15V – 30V AC/DC (optional 5V – 15V or 30V – 50V)
  • 16 bit counter per channel (up to 10kHz) with latch function
  • Filter for counter / flipflops adjustable from 5ms – 255ms
  • LED status display per input channel

Digital inputs

With our optocoupler inputs, digital signal states can be recorded within a voltage range of 5V to 30V AC or DC. Input and output circuits are galvanically isolated from each other up to 2.5kV.

 

Digital In Input Filter

With our Digital-In modules, an input filter can be set in a time interval of 1ms…255ms to filter interference pulses.

This means that AC signals can also be detected cleanly.

 

Counter

Each input has a 16 bit counter that can count up to 65535 pulses. If the maximum counter value is exceeded, the counting process starts again from zero. By means of a software command, the current status of all input counters can be read from the module simultaneously.

 

Recording of status changes

Status changes that occur between the readout cycles are reliably detected by internal flip-flops and can be read out separately by software. In addition, such an event is signalled by a status LED. Resetting is done automatically after the flip-flops have been read out.


Easy installation thanks to DIN rail bus

Thanks to the practical NET-Bus connector, which is clipped into the top-hat rail, individual modules of a system can be added or exchanged very easily. This Plug’n Play principle makes commissioning easier and eliminates the need for tiresome wiring.


LEDs

On the front side of our NET modules there are a number of status LEDs. These give you a quick overview of the most important functions of the modules, such as the switching states of the individual I/Os, module status or whether clean communication via the DIN rail bus is possible. This can be very helpful for fast error analysis, especially for field applications.


Connectors

A screwless system from the manufacturer WAGO Kontakttechnik is used as the connector. The 1-wire female connectors are 100% protected against mismating and have an eject and locking mechanism. All conductor types up to 1.5mm² can be connected.


General

Power supply Internal, via the DIN-Rail Bus
Power consumption Max. 90mA/24V
LEDs • Internal bus communication
• Module Status
• One LED per input channel
Connectors • Typ: Wago Kontakttechnik 713-1108/037-000
• Pluggable 16 pole female connector with locking mechanism
• 100 % malfunction protected
• 1-conductor connection for all types of conductors up to 1.5mm².
DIN Rail-Bus NET bus connector for connection to further NET modules
DIN rail mounting TS 35
Operating temperature +10°C to +50°C
Dimensions 135 mm x 22.5 mm x 111 mm (H x W x D)

Digital inputs

Optocoupler inputs • 16 inputs
• 15V – 30V DC/AC signal voltage (optional 5V – 15V DC/AC)
• Galvanic isolation between input and output circuit : up to 2.5kV AC for 1 minute
• Maximum input current: 14mA
• 16 bit counter per channel
• Maximum possible counting operations: 65535 / channel. Reset to zero after memory overflow
• Internal counting logic up to 10kHz with latch function
• Programmable filter for input channels (flip-flop and counter):
• Minimum low or high pulse duration: 5ms…255ms
• Detects a change from low to high and high to low level
• Detection of input state change between two readout processes
Digital In Input Filter
[New feature since
Q4/2020!]
With our Digital-In modules, an input filter can be set in a time interval of 1ms…255ms
to filter interfering pulses. Thus also AC signals can be detected cleanly.

[vrm360 canvas_name=s1 model_url=/wp-content/uploads/2021/01/NET-DEV_O16-1.obj aspect_ratio=2 initial_offset=1.5 autostart=true lightintensity=0.05 amb_lightintensity=1 button_color=#cc0000 border_width=1 border_color=#acacac backgcolor=#f8f8f8]

Additional information

Weight 0,124 kg

 

 

 


 

General information on the ICT tool

We have developed the new ICT tool to make commissioning our products as easy and straightforward as possible.
This tool combines all the important functions of our old programs, such as the Configuration Utility, Module Demo and DT-Flasher, in one.
With the ICT tool, you can now easily configure, test, diagnose, flash and debug our products.
In the following chapters, we would like to introduce you to our new all-in-one software in more detail.

Module selection

Here you can integrate your modules into the ICT tool by clicking on the “+” symbol, so that you can then configure or test them.


Start screen

Here you can find some important information about your selected module.
In addition, you can display the manual of the module as PDF or HTML version here.
Under “Show module IDs” you can call up all available module IDs. This ID is needed to integrate our products into your software projects.


ICT Treeview

In the treeview on the left side of the program window, you can see the respective forms that are supported by your module.
With a click you can then display this form in the right part of the program and perform possible configurations or tests.

M2M-CAN

Machine-to-machine, or M2M for short, involves direct communication between two or more modules. Analog or digital data can be sent channel by channel from a source module via the CAN bus to channels of one or more target modules. All products that have a CAN interface are supported. For communication via CAN, the controlled modules only need to be connected to the CAN bus.

M2M-CAN Configuration

In this example, CAN packets are sent every 500ms via the CAN bus to CAN ID 700
These settings can be made in the ICT tool in the CAN-Config area.


For precise and constant reading and writing of measured values at very short intervals, we have developed the software FIFO (“First in-First out”) for our NET series products. With the help of this software, the measured values that are sent from the PC to the NET module, for example, are temporarily stored in a FIFO buffer. These are then processed independently by the module at a defined time interval.

To put it simply: measured values are collected and stored in the buffer for both “FIFO In” and “FIFO Out” and then passed on in packets. This eliminates delays caused by traffic, spatial distances or other disruptive factors and significantly improves measurement processes.

 

All the advantages at a glance:

  • Analog and digital values can be read out at very short intervals (milliseconds)
  • Exact reading of the values in a self-defined time interval possible
  • With higher utilization via the Ethernet interface, the FIFO does not consume more traffic

 

Testing and programming

With our ICT tool, you can test and diagnose the FIFO-IN and FIFO-OUT with digital and analog I/Os.
You will also find help for correct programming in the source code of our FIFO sample programs.


General Handling

DapiOpenModule
This function opens a particular module.

DapiOpenModule

 

Description

This function opens a specific module

 

Definition

ULONG DapiOpenModule(ULONG moduleID, ULONG nr);

 

Parameters

moduleID=Specifies the module to be opened (see delib.h)
nr=Specifies which one (in case of several modules) should be opened.
nr=0 -> 1st module
nr=1 -> 2nd module

 

Return-Value

handle=Corresponding handle for the module
handle=0 -> module was not found

 

Comment

The handle returned by this function is needed to identify the module for all other functions.

 

Programming example

// Open USB module
handle = DapiOpenModule(RO_USB1, 0);
printf(“handle = %x\n”, handle);
if (handle==0)
{
// USB module was not found
printf(“Modul konnte nicht geöffnet werden\n”);
return;
}

DapiCloseModule
This command closes an opened module.

DapiCloseModule

 

Description

This command closes an open module.

 

Definition

ULONG DapiCloseModule(ULONG handle);

 

Parameters

handle=This is the handle of an open module

 

Return-Value

None

 

Programming example

// Close module
DapiCloseModule(handle);

DapiGetLastError
This function returns the last registered error. If an error has occurred, it must be deleted with DapiClearLastError(), otherwise any call of DapiGetLastError() will return the "old" error. If multiple modules are used, the use of DapiGetLastErrorByHandle() is recommended.

DapiGetLastError

 

Description

This function returns the last detected error. If an error occurred, it must be cleared with DapiClearLastError(), otherwise any call to DapiGetLastError() will return the “old” error.
If more than one module should be used, it is recommended to use DapiGetLastLastErrorByHandle().

 

Definition

ULONG DapiGetLastError(void);

 

Parameters

None

 

Return-Value

Error Code
0=no error. (see delib_error_codes.h)

 

Programming example

BOOL IsError()
{
unsigned char msg[500];
unsigned long error_code = DapiGetLastError();

if (error_code != DAPI_ERR_NONE)
{
DapiGetLastErrorText((unsigned char*) msg, sizeof(msg));
printf(“Error Code = 0x%x * Message = %s\n”, error_code, msg);

DapiClearLastError();

return TRUE;
}

return FALSE;
}

DapiGetLastErrorByHandle
This function returns the last registered error of a particular module (handle). If an error has occurred, it must be deleted with DapiClearLastErrorByHandle(), otherwise any call of DapiGetLastErrorByHandle() will return the "old" error.

DapiGetLastErrorByHandle

 

Description

This function returns the last detected error of a specific module (handle). If an error occurred, it must be cleared with DapiClearLastErrorByHandle(), otherwise any call to DapiGetLastErrorByHandle() will return the “old” error.

 

Definition

ULONG DapiGetLastErrorByHandle(ULONG handle);

 

Parameters

handle=This is the handle of an open module

 

Return-Value

Error Code
0=no error. (see delib_error_codes.h)

 

Programming example

BOOL IsError(ULONG handle)
{
unsigned long error_code = DapiGetLastErrorByHandle(handle);

if (error_code != DAPI_ERR_NONE)
{
printf(“Error detected on handle 0x%x – Error Code = 0x%x\n”, handle, error_code);

DapiClearLastErrorByHandle(handle);

return TRUE;
}

return FALSE;
}

DapiGetLastErrorText
This function reads the text of the last registered error. If an error has occurred, it must be cleared with DapiClearLastError(), otherwise every call of DapiGetLastErrorText() returns the "old" error. Definition

DapiGetLastErrorText

 

Description

This function reads the text of the last detected error. If an error occurred, it must be cleared with DapiClearLastError(), otherwise any call to DapiGetLastErrorText() will return the “old” error.

 

Definition

ULONG DapiGetLastErrorText(unsigned char * msg, unsigned long msg_length);

 

Parameters

msg = Buffer for the text to be received
msg_length = Length of the text buffer

 

Programming example

BOOL IsError()
{
unsigned char msg[500];
unsigned long error_code = DapiGetLastError();

if (error_code != DAPI_ERR_NONE)
{
DapiGetLastErrorText((unsigned char*) msg, sizeof(msg));
printf(“Error Code = 0x%x * Message = %s\n”, error_code, msg);

DapiClearLastError();

return TRUE;
}

return FALSE;
}

DapiClearLastError
This function deletes the last error registered with DapiGetLastError().

DapiClearLastError

Description

This function deletes the last error registered with DapiGetLastError().

 

Definition

void DapiGetLastError(void);

 

Parameters

None

 

Return value

None

 

Example program

BOOL IsError()
{
unsigned char msg[500];
unsigned long error_code = DapiGetLastError();

if (error_code != DAPI_ERR_NONE)
{
DapiGetLastErrorText((unsigned char*) msg, sizeof(msg));
printf(“Error Code = 0x%x * Message = %s\n”, error_code, msg);

DapiClearLastError();

return TRUE;
}

return FALSE;
}

DapiClearLastErrorByHandle
This function deletes the last error of a particular module (handle), which was registered with DapiGetLastErrorByHandle().

DapiClearLastErrorByHandle

 

Description

This function deletes the last error of a particular module (handle), which was registered with DapiGetLastErrorByHandle().

 

Definition

void DapiClearLastErrorByHandle(ULONG handle);

 

Parameters

handle=This is the handle of an opened module.

 

Return value

None

 

Example program

BOOL IsError(ULONG handle)
{
unsigned long error_code = DapiGetLastErrorByHandle(handle);

if (error_code != DAPI_ERR_NONE)
{
printf(“Error detected on handle 0x%x – Error Code = 0x%x\n”, handle, error_code);

DapiClearLastErrorByHandle(handle);

return TRUE;
}

return FALSE;
}

DapiGetDELIBVersion
This function returns the installed DELIB version.

DapiGetDELIBVersion

 

Description

This function returns the installed DELIB version.

 

Definition

ULONG DapiGetDELIBVersion(ULONG mode, ULONG par);

 

Parameters

mode=Mode with which the version is read (must always be 0).
par=This parameter is not defined (must always be 0).

 

Return-Value

version=Version number of the installed DELIB version [hex]

 

Programming example

version = DapiGetDELIBVersion(0, 0);
//With installed version 1.32 version = 132(hex)

DapiOpenModuleEx
This function opens a specific module with ethernet interface.The particularity of this command is,that parameters like IP-address, portnumber and the duration of the timeout can be specified. The opening of the module is independent of the DELIB Configuration Utility settings.

DapiOpenModuleEx

 

Description

This function specifically opens a module with an Ethernet interface. The parameters IP address, port number and the duration of the timeout can be determined.

 

Definition

ULONG DapiOpenModuleEx(ULONG moduleID, ULONG nr, unsigned char* exbuffer, 0);

 

Parameters

moduleID = Specifies the module to be opened (see delib.h)
nr = Specifies which one (in case of several modules) is to be opened
nr = 0 -> 1st module
nr = 1 -> 2nd module
exbuffer = buffer for IP address, port number and duration of the timeout

 

Return-Value

handle = Corresponding handle for the module
handle = 0 -> module was not found

 

Comment

The handle returned by this function is required to identify the module for all other functions.
This command is supported by all modules with Ethernet interface.

 

Programming example

// Open ETH-Module with parameter

DAPI_OPENMODULEEX_STRUCT open_buffer;

strcpy((char*) open_buffer.address, “192.168.1.10”);
open_buffer.portno = 0;
open_buffer.timeout = 5000;

handle = DapiOpenModuleEx(RO_ETH, 0, (unsigned char*) &open_buffer, 0);
printf(“Module handle = %x\n”, handle);

Digital input functions

DapiDIGet1
This command reads a single digital input.

DapiDIGet1

 

Description

This command reads a single digital input.

 

Definition

ULONG DapiDIGet1(ULONG handle, ULONG ch);

 

Parameters

handle=This is the handle of an open module
ch= Specifies the number of the input to be read (0, 1, 2, 3, .. )

 

Return-Value

Status of the input (0/1)

 

Requirements

The following SW feature bits must be supported by the module:

DAPI_SW_FEATURE_BIT_CFG_DI

The following conditions for the transfer parameters must be met:

maxCh = DapiSpecialCommand(handle, DAPI_SPECIAL_CMD_GET_MODULE_CONFIG, DAPI_SPECIAL_GET_MODULE_CONFIG_PAR_DI, 0, 0)
maxCh > ch

DapiDIGet8
This command reads 8 digital inputs simultaneously.

DapiDIGet8

 

Description

This command reads 8 digital inputs simultaneously.

 

Definition

ULONG DapiDIGet8(ULONG handle, ULONG ch);

 

Parameters

handle=This is the handle of an open module
ch= Specifies the number of the input from which the read is to start (0, 8, 16, 24, .. )

 

Return-Value

Status of the read inputs

 

Requirements

The following SW feature bits must be supported by the module:

DAPI_SW_FEATURE_BIT_CFG_DI

The following conditions for the transfer parameters must be met:

maxCh = DapiSpecialCommand(handle, DAPI_SPECIAL_CMD_GET_MODULE_CONFIG, DAPI_SPECIAL_GET_MODULE_CONFIG_PAR_DI, 0, 0)
maxCh > ch ch must be 0, 8, 16, …

DapiDIGet16
This command reads 16 digital inputs simultaneously.

DapiDIGet16

 

Description

This command reads 16 digital inputs simultaneously.

 

Definition

ULONG DapiDIGet16(ULONG handle, ULONG ch);

 

Parameters

handle=This is the handle of an open module
ch= Specifies the number of the input from which the read is to start (0, 16, 32, …)

 

Return-Value

Zustand der gelesen Eingänge

 

Requirements

The following SW feature bits must be supported by the module:

DAPI_SW_FEATURE_BIT_CFG_DI

The following conditions for the transfer parameters must be met:

maxCh = DapiSpecialCommand(handle, DAPI_SPECIAL_CMD_GET_MODULE_CONFIG, DAPI_SPECIAL_GET_MODULE_CONFIG_PAR_DI, 0, 0)
maxCh > ch ch must be 0, 16, 32, …

DapiDIGet32
This command reads 32 digital inputs simultaneously.

DapiDIGet32

 

Description

This command reads 32 digital inputs simultaneously.

 

Definition

ULONG DapiDIGet32(ULONG handle, ULONG ch);

 

Parameters

handle=This is the handle of an open module
ch= Specifies the number of the input from which the read is to start (0, 32, 64, ..)

 

Return-Value

Status of the read inputs

 

Requirements

The following SW feature bits must be supported by the module:

DAPI_SW_FEATURE_BIT_CFG_DI

The following conditions for the transfer parameters must be met:

maxCh = DapiSpecialCommand(handle, DAPI_SPECIAL_CMD_GET_MODULE_CONFIG, DAPI_SPECIAL_GET_MODULE_CONFIG_PAR_DI, 0, 0)
maxCh > ch ch must be 0, 32, 64, …

 

Programming example

unsigned long data;
// —————————————————-
// Read a value from the inputs (input 1-31)
data = (unsigned long) DapiDIGet32(handle, 0);
// Chan start = 0
printf(“Input 0-31 : 0x%x\n”, data);
printf(“key for further\n”);
getch();
// —————————————————-
// Read a value from the inputs (input 32-64)
data = (unsigned long) DapiDIGet32(handle, 32);
// Chan Start = 32
printf(“Input 32-64 : 0x%x\n”, data);
printf(“key for further\n”);
getch();

DapiDIGet64
This command reads 64 digital inputs simultaneously.

DapiDIGet64

 

Description

This command reads 64 digital inputs simultaneously.

 

Definition

ULONGLONG DapiDIGet64(ULONG handle, ULONG ch);

 

Parameters

handle=This is the handle of an open module
ch= Specifies the number of the input from which the read is to start (0, 64, ..)

 

Return-Value

Status of the read inputs

 

Requirements

The following SW feature bits must be supported by the module:

DAPI_SW_FEATURE_BIT_CFG_DI

The following conditions for the transfer parameters must be met:

maxCh = DapiSpecialCommand(handle, DAPI_SPECIAL_CMD_GET_MODULE_CONFIG, DAPI_SPECIAL_GET_MODULE_CONFIG_PAR_DI, 0, 0)
maxCh > ch ch must be 0 or 64

DapiDIGetFF32
This command reads the flip-flops from the inputs and resets them. (Input state change).

DapiDIGetFF32

 

Description

This command reads the flip-flops of the inputs and resets them.
(input state change)

 

Definition

ULONG DapiDIGetFF32(ULONG handle, ULONG ch);

 

Parameters

handle=This is the handle of an open module
ch= Specifies the number of the input from which the read is to start (0, 32, 64, ..)

 

Return-Value

Status of 32 input status changes

 

Requirements

The following SW feature bits must be supported by the module:

DAPI_SW_FEATURE_BIT_CFG_DI_FF

The following conditions for the transfer parameters must be met:

maxCh = DapiSpecialCommand(handle, DAPI_SPECIAL_CMD_GET_MODULE_CONFIG, DAPI_SPECIAL_GET_MODULE_CONFIG_PAR_DI_FF, 0, 0)
maxCh > ch ch must be 0, 32, 64, …

Digital input counter

DapiDIGetCounter
This command reads the counter of a digital input.

DapiDIGetCounter

 

Description

This instruction reads the input counter of a digital input.

 

Definition

ULONG DapiDIGetCounter(ULONG handle, ULONG ch, ULONG mode);

 

Parameters

handle=This is the handle of an open module.
ch=Specifies the number of the input from which to read.
mode=0 (normal counting function)
mode=DAPI_CNT_MODE_READ_WITH_RESET (read counter and reset direct counter)
mode=DAPI_CNT_MODE_READ_LATCHED (read out the stored counter value)

 

Return-Value

Output of the counter value

 

Requirements

The following SW feature bits must be supported by the module:

DAPI_SW_FEATURE_BIT_CFG_DI_CNT

The following conditions for the transfer parameters must be met:

maxCh = DapiSpecialCommand(handle, DAPI_SPECIAL_CMD_GET_MODULE_CONFIG, DAPI_SPECIAL_GET_MODULE_CONFIG_PAR_DI_COUNTER, 0, 0)
maxCh > ch

 

Programming example

value = DapiDIGetCounter(handle, 0 ,0); // counter of DI Chan 0 is read
value = DapiDIGetCounter(handle, 1 ,0); // counter of DI Chan 1 is read
value = DapiDIGetCounter(handle, 8 ,0); // counter of DI Chan 8 is read
value = DapiDIGetCounter(handle, 0 ,DAPI_CNT_MODE_READ_WITH_RESET); // counter of DI Chan 0 is read AND reset
value = DapiDIGetCounter(handle, 1, DAPI_CNT_MODE_READ_LATCHED); // Reading the stored counter value of DI Chan 1

DapiSpecialCommand - DapiSpecialCounterLatchAll
This command saves the counter values of all digital inputs simultaneously into a temporary storage (latch). So, after that, the counter of the latch can be read successively. Here, the speciality is, that it is possible to "freeze" simultaneously the counter and the frozen counter (latch) can be read one by one.

DapiSpecialCommand – DapiSpecialCounterLatchAll

 

Description

This instruction stores the counter readings of all input counters simultaneously in a buffer (latch).
Thus, all counter readings of the latch can be read out one after the other.
A special feature is that a simultaneous “freezing” of the counter readings is possible and the frozen readings (latch) can then be read out one after the other.

 

Definition

void DapiSpecialCommand(ULONG handle, DAPI_SPECIAL_CMD_COUNTER, DAPI_SPECIAL_COUNTER_LATCH_ALL, 0, 0);

 

Parameters

 

Comment

This command is only supported by our O8-R8 time modules!

 

Programming example

DapiSpecialCommand(handle, DAPI_SPECIAL_CMD_COUNTER, DAPI_SPECIAL_COUNTER_LATCH_ALL, 0, 0);

DapiSpecialCommand - DapiSpecialCounterLatchAllWithReset
This command saves the counters of all digital inputs simultaneously into a temporary storage (latch). In addition, the counters of the digital inputs will be reset.

DapiSpecialCommand – DapiSpecialCounterLatchAllWithReset

 

Description

This instruction stores the counter readings of all input counters simultaneously in a buffer (latch). Additionally, the counter readings of the input counters are reset afterwards.

 

Definition

void DapiSpecialCommand(ULONG handle, DAPI_SPECIAL_CMD_COUNTER, DAPI_SPECIAL_COUNTER_LATCH_ALL_WITH_RESET, 0, 0);

 

Parameters

 

Comment

This command is only supported by our O8-R8 time modules!

 

Programming example

DapiSpecialCommand(handle, DAPI_SPECIAL_CMD_COUNTER, DAPI_SPECIAL_COUNTER_LATCH_ALL_WITH_RESET, 0, 0);

CNT48 functions

DapiCnt48ModeSet
This command sets the count mode for a single input channel.

DapiCnt48ModeSet

 

Description

This command sets a counting mode (optionally also sub mode) and input filter for a specific input counter channel.

 

Definition

void DapiCnt48ModeSet(ULONG handle, ULONG ch, ULONG mode);

 

Parameters

handle=This is the handle of an open module
ch=number of the input counter channel whose mode is to be set (0, 1, 2, 3, .. )
mode= Specifies the mode

 

Possible values for mode

mode=DAPI_CNT48_MODE_COUNT_RISING_EDGE | DAPI_CNT48_SUBMODE_NO_RESET
In this mode, counting is performed on the rising edge.

 

mode=DAPI_CNT48_MODE_COUNT_RISING_EDGE | DAPI_CNT48_SUBMODE_RESET_WITH_READ
In this mode, counting is performed on the rising edge. In addition, the counter is reset with every read operation.

 

mode=DAPI_CNT48_MODE_COUNT_RISING_EDGE | DAPI_CNT48_SUBMODE_RESET_ON_CH_7
In this mode, counting is performed on the rising edge. In addition, the counter can be reset via an external signal (last channel of the module = 1).

 

mode=DAPI_CNT48_MODE_COUNT_RISING_EDGE | DAPI_CNT48_SUBMODE_LATCH_COMMON
With the command “DapiSpecialCommand(handle, DAPI_SPECIAL_CMD_CNT48, DAPI_SPECIAL_CNT48_LATCH_GROUP8, 0, 0)” all 8 counter values of the input counters are written into a latch simultaneously. This mode can then be used to read the latched counter reading.

 

mode=DAPI_CNT48_MODE_T
This mode is used to measure the period T. A 100 MHz counter serves as a basis for this.

 

mode=DAPI_CNT48_MODE_FREQUENCY
In this mode the number of rising edges within one second (= frequency) can be measured.

 

mode=DAPI_CNT48_MODE_PWM
This mode is used to measure the “high” and “low” time of a signal. The ratio can then be determined (PWM).

 

Additionally, all input counters can be combined with an input filter (with an or combination). The following input filters are available for this:

 

DAPI_CNT48_FILTER_20ns
DAPI_CNT48_FILTER_100ns
DAPI_CNT48_FILTER_250ns
DAPI_CNT48_FILTER_500ns
DAPI_CNT48_FILTER_1us
DAPI_CNT48_FILTER_2_5us
DAPI_CNT48_FILTER_5us
DAPI_CNT48_FILTER_10us
DAPI_CNT48_FILTER_25us
DAPI_CNT48_FILTER_50us
DAPI_CNT48_FILTER_100us
DAPI_CNT48_FILTER_250us
DAPI_CNT48_FILTER_500us
DAPI_CNT48_FILTER_1ms
DAPI_CNT48_FILTER_2_5ms
DAPI_CNT48_FILTER_5ms

 

Comment

This command is only supported by our module RO-CNT8.

 

Programming example

DapiCnt48ModeSet(handle, 0, DAPI_CNT48_MODE_COUNT_RISING_EDGE | DAPI_CNT48_SUBMODE_RESET_WITH_READ | DAPI_CNT48_FILTER_20ns);
//input counter channel 0 counts all pulses <= 20ns on rising edge. In addition, the counter is reset after a query.
DapiCnt48ModeSet(handle, 1, DAPI_CNT48_MODE_COUNT_RISING_EDGE | DAPI_CNT48_SUBMODE_RESET_ON_CH_7 | DAPI_CNT48_FILTER_500us);
//input counter channel 1 counts all pulses <= 500us on rising edge. This counter can be reset with an external signal (ch7 = 1).
DapiCnt48ModeSet(handle, 2, DAPI_CNT48_MODE_PWM | DAPI_CNT48_FILTER_5ms);
//input counter channel 2 measures all low-/high times <= 5ms. The ratio is then determined (PWM).

DapiCnt48ModeGet
This command returns the count mode of a single input channel.

DapiCnt48ModeGet

 

Description

This instruction reads back the count mode of a specific input counter channel.

 

Definition

ULONG DapiCnt48ModeGet(ULONG handle, ULONG ch);

 

Parameters

handle=This is the handle of an open module
ch=number of the input counter channel whose mode is to be output (0, 1, 2, 3, .. )

 

Return-Value

Counting mode of the input counter channel.
(More information / description of the bits -> see delib.h or manual “RO register assignment”)

 

Comment

This command is only supported by our module RO-CNT8.

 

Programming example

value = DapiCnt48ModeGet(handle, 0)
//G Returns the count mode of input counter channel 0
value = DapiCnt48ModeGet(handle, 3)
//G Returns the counting mode of input counter channel 3

DapiCnt48CounterGet32
This command reads the first 32 bits of a 48 bit input counter.

DapiCnt48CounterGet32

 

Description

This command reads the first 32 bits of a 48-bit input counter.

 

Definition

ULONG DapiCnt48CounterGet32(ULONG handle, ULONG ch);

 

Parameters

handle=This is the handle of an open module
ch= Specifies the number of the input counter channel to be read (0, 1, 2, 3, .. )

 

Return-Value

Output of the counter value.

 

Comment

This command is only supported by our modules RO-CNT8 and RO-CNT/IGR.

 

Programming example

value = DapiCnt48CounterGet32(handle, 0);
//outputs the value of input counter channel 0
value = DapiCnt48CounterGet32(handle, 3);
//outputs the value of input counter channel 3

DapiCnt48CounterGet48
This command reads a 48 bit counter of an input counter.

DapiCnt48CounterGet48

 

Description

Dieser Befehl liest einen 48 Bit Zähler eines Eingangszählerkanals.

 

Definition

ULONGLONG DapiCnt48CounterGet48(ULONG handle, ULONG ch);

 

Parameters

handle=This is the handle of an open module
ch= Specifies the number of the input counter channel to be read (0, 1, 2, 3, .. )

 

Return-Wert

Output of the counter value.

 

Comment

This command is only supported by our modules RO-CNT8 and RO-CNT/IGR.

 

Programming example

value = DapiCnt48CounterGet48(handle, 0);
//outputs the value of input counter channel 0
value = DapiCnt48CounterGet48(handle, 3);
//outputs the value of input counter channel 3

DapiSpecialCommand - DapiSpecialDIFilterValueSet
This command sets a filter [ms], in which time interval digital input channels are sampled

DapiSpecialCommand – Dapi_Special_DI_Filter_Value_Set

 

Description

This command sets a filter [ms], in which time interval digital input channels are sampled.

 

Definition

DapiSpecialCommand(handle, DAPI_SPECIAL_CMD_DI, DAPI_SPECIAL_DI_FILTER_VALUE_SET, ULONG time_ms, 0);

 

Parameters

handle=This is the handle of an opened module.
time_ms=Time interval [ms] by which digital input channels are sampled.

 

Remarks

This command only supports pulse times between 5ms and 255ms.
If no time is set, the default value is 100ms.

 

This command is not supported by our modules with Ethernet interface.

 

Programming example

DapiSpecialCommand(handle, DAPI_SPECIAL_CMD_DI, DAPI_SPECIAL_DI_FILTER_VALUE_SET, 5, 0);
// Sets the time interval to 5ms
DapiSpecialCommand(handle, DAPI_SPECIAL_CMD_DI, DAPI_SPECIAL_DI_FILTER_VALUE_SET, 150, 0);
// Sets the time interval to 150ms

DapiSpecialCommand - DapiSpecialDIFilterValueGet
This command returns the previously set value of the time interval for sampling the digital input channels in [ms]

DapiSpecialCommand – Dapi_Special_DI_Filter_Value_Get

 

Description

This command returns the previously set value of the time interval for sampling the digital input channels in [ms].

 

Definition

ULONG DapiSpecialCommand(handle, DAPI_SPECIAL_CMD_DI, DAPI_SPECIAL_DI_FILTER_VALUE_GET, 0, 0);

 

Parameters

handle=This is the handle of an open module

 

Return-Value

Time [ms]

 

Remarks

This command is not supported by our modules with Ethernet interface.

 

Programming example

value = DapiSpecialCommand(handle, DAPI_SPECIAL_CMD_DI, DAPI_SPECIAL_DI_FILTER_VALUE_GET, 0, 0);
//Returns the time interval for sampling the digital input channels

DapiSpecialCommand - Dapi_Special_DI_FF_Filter_Value_Set
This command sets a filter [ms], in which time interval the input flip-flops and the input counters are polled.

DapiSpecialCommand – Dapi_Special_DI_FF_Filter_Value_Set

 

Description

This command sets a filter [ms], in which time interval the input flip-flops and the input counters are polled.

 

Definition

void DapiSpecialCommand(handle, DAPI_SPECIAL_CMD_DI, DAPI_SPECIAL_DI_FF_FILTER_VALUE_SET, ULONG time_ms, 0);

 

Parameters

handle=This is the handle of an open module
time_ms=Time interval [ms] by scanning digital input channels.

 

Return-Value

None.

 

Comment

This command only supports pulse times between 5ms and 255ms.
If no time is set, the default value is 100ms.

 

This command is not supported by our modules with Ethernet interface.

 

Programming example

DapiSpecialCommand(handle, DAPI_SPECIAL_CMD_DI, DAPI_SPECIAL_DI_FF_FILTER_VALUE_SET, 5, 0);
// Sets the time interval to 5ms
DapiSpecialCommand(handle, DAPI_SPECIAL_CMD_DI,
DAPI_SPECIAL_DI_FF_FILTER_VALUE_SET, 150, 0);
// Sets the time interval to 150ms

DapiSpecialCommand - Dapi_Special_DI_FF_Filter_Value_Get
This command returns the predefined value of the time interval for sampling the input flip-flops and the input counters in [ms].

DapiSpecialCommand – Dapi_Special_DI_FF_Filter_Value_Get

 

Description

This command returns the predefined value of the time interval for sampling the input flip-flops and the input counters in [ms].

 

Definition

ULONG DapiSpecialCommand(handle, DAPI_SPECIAL_CMD_DI, DAPI_SPECIAL_DI_FF_FILTER_VALUE_GET, 0, 0);

 

Parameters

handle=This is the handle of an open module

 

Return-Value

Time [ms]

 

Comment

This command is not supported by our modules with Ethernet interface.

 

Programming example

value = DapiSpecialCommand(handle, DAPI_SPECIAL_CMD_DI, DAPI_SPECIAL_DI_FF_FILTER_VALUE_GET, 0, 0);
// Returns the time interval for scanning the digital input channels.

DapiSpecialCommand - DapiSpecialCNT48LatchGroup8
This command saves the counter values of 8 inputcounters simultaneously into a temporary storage (latch). So, after that, the counter values of the latch can be read successively. Here, the speciality is, that it is possible to "freeze" the counter simultaneously and the frozen counter (latch) can be read one by one.

DapiSpecialCommand – DapiSpecialCNT48LatchGroup8

 

Description

This instruction stores the counter readings of 8 input counters simultaneously in a latch.
Thus, all counter readings of the latch can be read out one after the other.
A special feature is that a simultaneous “freezing” of the counter readings is possible and the frozen readings (latch) can then be read out (slowly) one after the other.

 

Definition

void DapiSpecialCommand(ULONG handle, DAPI_SPECIAL_CMD_CNT48, DAPI_SPECIAL_CNT48_LATCH_GROUP8, ULONG ch, 0)

 

Parameters

handle=This is the handle of an open module
ch=Specifies the number of the input counter from which the counter status of 8 input counters are latched (0, 8, 16, …)

 

Comment

This command is only supported by our module RO-CNT8.

Please regard that only the counter readings of the input counters are latched for which the mode

“DAPI_CNT48_SUBMODE_LATCH_COMMON” was set. (-> DapiCnt48ModeSet)

 

Programming example

DapiSpecialCommand(handle, DAPI_SPECIAL_CMD_CNT48, DAPI_SPECIAL_CNT48_LATCH_GROUP8, 0, 0)
// Counter values of the input counters 0-7 are latched
DapiSpecialCommand(handle, DAPI_SPECIAL_CMD_CNT48, DAPI_SPECIAL_CNT48_LATCH_GROUP8, 8, 0)
// Counter values of the input counters 8-15 are latched

DapiSpecialCommand - DapiSpecialCNT48ResetGroup8
This command resets the counter values of 8 inputcounter simultaneously.

DapiSpecialCommand – DapiSpecialCNT48ResetGroup8

 

Description

This command simultaneously resets the counts of 8 input counters.

 

Definition

void DapiSpecialCommand(ULONG handle, DAPI_SPECIAL_CMD_CNT48, DAPI_SPECIAL_CNT48_RESET_GROUP8, ULONG ch, 0)

 

Parameters

handle=This is the handle of an open module
ch=Specifies the number of the input counter from which the counter status of 8 input counters are reset (0, 8, 16, …)

 

Comment

This command is only supported by our module RO-CNT8.

 

Programming example

DapiSpecialCommand(handle, DAPI_SPECIAL_CMD_CNT48, DAPI_SPECIAL_CNT48_RESET_GROUP8, 0, 0)
// Counter values of the input counters 0-7 are reset
DapiSpecialCommand(handle, DAPI_SPECIAL_CMD_CNT48, DAPI_SPECIAL_CNT48_RESET_GROUP8, 8, 0)
// Counter values of the input counters 8-15 are reset

DapiSpecialCommand - DapiSpecialCNT48ResetSingle
This commands resets the counter value of a single inputcounter.

DapiSpecialCommand – DapiSpecialCNT48ResetSingle

 

Description

This command resets the count of a single input counter.

 

Definition

void DapiSpecialCommand(ULONG handle, DAPI_SPECIAL_CMD_CNT48, DAPI_SPECIAL_CNT48_RESET_SINGLE, ULONG ch, 0)

 

Parameters

handle=This is the handle of an open module
ch= Specifies the number of the input counter whose counter value is to be reset (0, 1, 2, ..)

 

Comment

This command is only supported by our module RO-CNT8.

 

Programming example

DapiSpecialCommand(handle, DAPI_SPECIAL_CMD_CNT48, DAPI_SPECIAL_CNT48_RESET_SINGLE, 0, 0)
// Counter reading of input counter 0 is reset
DapiSpecialCommand(handle, DAPI_SPECIAL_CMD_CNT48, DAPI_SPECIAL_CNT48_RESET_SINGLE, 1, 0)
// Counter reading of input counter 1 is reset

DapiSpecialCommand - DapiSpecialCNT48DIGet1
This command reads the input state (0/1) of a single inputcounterchannel.

DapiSpecialCommand – DapiSpecialCNT48DIGet1

 

Description

This command reads the input state (0/1) of a digital input counter channel.

 

Definition

ULONG DapiSpecialCommand(ULONG handle, DAPI_SPECIAL_CMD_CNT48, DAPI_SPECIAL_CNT48_DI_GET1, ULONG ch, 0);

 

Parameters

handle=This is the handle of an open module
ch= Specifies the number of the input counter channel whose input state is to be read (0, 1, 2, 3, .. )

 

Return-Value

Status of the input counter (0/1)

 

Comment

This command is only supported by our module RO-CNT8.

 

Programming example

value = DapiSpecialCommand(handle, DAPI_SPECIAL_CMD_CNT48, DAPI_SPECIAL_CNT48_DI_GET1, 0, 0)
// Reads input status of input counter channel 1
value = DapiSpecialCommand(handle, DAPI_SPECIAL_CMD_CNT48, DAPI_SPECIAL_CNT48_DI_GET1, 1, 0)
// Reads input status of input counter channel 2

Web Interface – Interface

All DEDITEC Ethernet modules have a web interface that allows you to make settings conveniently via your web browser and also gives you direct access to the I/Os.

This allows you to access the product with a smartphone, tablet or even a PC via a browser.

The following I/O units are supported:

 

  • Digital inputs
  • Digital inputs (counter function)
  • Digital outputs
  • Analog inputs (voltage & current)
  • Analogue outputs (voltage & current)
  • PT100 temperature detection
  • Stepper motor control

You can protect the Ethernet module against unauthorized access with a user system and optional encryption system.

General

Start page of the web interface. The navigation on the left side gives you access to various setting options.

Network configuration

All network settings can be made directly via the web interface.

Usermanager

Here you can define the user name and password for access to the web interface. If the user is inactive, he/she is automatically logged out after the session time has expired.

Status / Reboot

Version of the installed firmware. Functions for restarting and resetting the settings.

Security

In addition to a user/password system for the web interface, we also offer you the option of encrypting the entire network communication. Access to the I/Os can also be blocked.

Supported I/Os

In the following we show you the supported I/Os that you can operate via the web interface.

Digital Inputs

The picture shows the overview of the digital inputs. You can switch between several inputs via the drop-down menu. The column ‘State’ shows whether a signal is present at the input.

Digital Inputs Counter

Our digital inputs have a counting function. The counter reading can be read and reset via the web interface.

Digital Outputs

The digital outputs can be switched via an on/off button. The current status of the outputs can be read back via the ‘Readback’ column.

Analogue Inputs

Current and voltage can also be read out via the web interface. The desired operating mode can be set via the A/D Mode drop-down menu.

Analogue Outputs

Analogue signals can also be output via the web interface. The desired D/A mode can be set via the drop-down menu, as with the analog inputs. The desired value can be written to the outputs using the ‘SET’ button. The column ‘Readback’ shows the current voltage/current output of the D/A converter.

Temperature measurement (PT100)

The temperature measurement is supported by our RO series.

 

PT100

The current temperature can be read. If no sensor is connected to the channel, this is signalled with ‘disconnected’.

Stepper-Motor Control

The position and speed of the stepper motor can be set via the control elements. The status window shows the current position, temperature and power supply.

I/O Control APP for Android™

 

Get it on Google Play

 

 

 

Control the digital and analog I/Os of our Ethernet modules from on the road. With the DEDITEC I/O control Android App, any network-compatible Android device can be remotely controlled for DEDITEC products with Ethernet interface

 

Features:

  • Separate storage of network settings for private and public networks
  • Better clarity through configurable I/O names
  • Configurable refresh of all I/Os

The following I/Os are supported:

  • up to 128 analog inputs (0..10V, 0..5V, +/- 10V and +/- 5V)
  • up to 64 analog outputs (0..10V, 0..5V, +/- 10V and +/- 5V)
  • up to 128 digital inputs and outputs

Network settings
A configuration for private (WLAN) or public (Internet) networks can be created and saved in the network settings.


Module configuration

At the module configuration you see the number of connected I/O modules.

You can also select here which I/Os are to be controlled.


Digital inputs
The digital inputs are scanned at an adjustable interval.


Digital outputs
In the area of the digital outputs the channels can be switched on or off individually.

It is also possible to switch all channels on or off.


Analogue inputs
For the analog inputs you can select from the measuring ranges 0..10V, 0..5V, +/- 10V or +/- 5V.

The A/D channels are scanned automatically at an adjustable interval.


Analogue outputs
Here you may set analog outputs in the measuring range 0..10V, 0..5V, +/- 10V or +/- 5V.


Settings
This picture shows the settings for analog outputs. Each channel can be given a name here.

It can also be defined here whether and at what interval the analog outputs are read back.

These settings are available for all I/Os.

 

Block diagram NET-DEV-OPTO-IN16

Blockschaltbild NET-DEV-OPTO-IN16

Connection example Optoin

Connection example

Screwless connector system

The customer’s connection wiring of the inputs and outputs is carried out via screwless, pluggable terminal strips. The conductor connection is made by a so-called actuating tool.
A locking and ejection mechanism facilitates the insertion and removal of the complete terminal strip.

 

Handling

Step 1

Remove the operating tool from the scope of delivery.

Step 2

Insert the operating tool firmly into the side opening in the direction of conductor connection.

Step 3

Now insert the stripped conductor into the open terminal contact.

Schritt 4

Pull the operating tool out again.

Step 5

Check the correct connection of the conductor. It should now no longer be possible to pull it out easily.

Manual

Manual NET-Serie
Hard- und Software description
Download
  • Description NET-CPU Modules
  • Description NET-DEV Digital Modules

 

DELIB driver library

Manual of the DELIB driver library
Documentation of all functions for the driver library
Download
  • Windows 10, 8, Vista, 7, XP, 2000 andLinux
  • Moduel open/close functions
  • Digital inputs: reading 1 / 8 / 16 / 32 / 64 bit
  • Digital outputs: Write 1 / 8 / 16 / 32 / 64 bit
  • A/D Lesen: read, read_volt, read_mA, A/D Modus einstellen
  • D/A schreiben: write, write_volt, write_mA, D/A-Modus einstellen
DELIB (64-bit) driver library for Windows
For Windows 11/10, Windows 7, Windows 8, Vista, XP and 2000
Download

Installation file for the 64 bit DELIB driver library.

The following operating systems are supported:

64 bit

  • Windows 11/10 x64
  • Windows 7 x64
  • Windows 8 x64
  • Windows Server 2012 x64
  • Windows Server 2008 x64
  • Windows Vista x64
  • Windows XP x64
  • Windows Server 2003 x64

Included software

  • DT-Flasher x64
    Software to update DEDITEC module to the latest version
  • DELIB Configuration Utility x64
    Set configuration of module addresses
  • DELIB Module Config x64
    Configuration of module-specific settings
  • CAN Configuration Utility x64
    Set configuration of CAN modules
  • DELIB Module Demo x64
    Enables manual switching of a module
  • DELIB Command Line Interface x64
    Enables the execution of DELIB commands in the command line
  • Watchdog Configuration Utility x64
    Set configuration of a watchdog stick
DELIB (32-bit) driver library for Windows
For Windows 11/10, Windows 7, Windows 8, Vista, XP and 2000
Download

Installation file for the 32-bit version of the DELIB driver library.

The following operating systems are compatible:
32-Bit

    • Windows 11/10
    • Windows 7
    • Windows 8
    • Windows Server 2012
    • Windows Server 2008
    • Windows Vista
    • Windows XP
    • Windows Server 2003

64-Bit

  • Windows 10 x64
  • Windows 7 x64
  • Windows 8 x64
  • Windows Server 2012 x64
  • Windows Server 2008 x64
  • Windows Vista x64
  • Windows XP x64
  • Windows Server 2003 x64

Included software

  • DT-Flasher
    Software to update DEDITEC module to the latest version
  • DELIB Configuration Utility
    Set configuration of module addresses
  • DELIB Module Config
    Configuration of module-specific settings
  • CAN Configuration Utility
    Set configuration of CAN modules
  • DELIB Module Demo
    Enables manual switching of a module
  • DELIB Command Line Interface
    Enables the execution of DELIB commands in the command line
  • Watchdog Configuration Utility
    Set configuration of a watchdog stick

Attention:

With this version of the driver library, only 32-bit applications can be created, which can then be run on 32- and 64-bit systems.

DELIB driver library for Linux (32/64-bit)
For 32/64-bit Linux distributions starting with kernel 2.6.x
Download

DELIB driver library for Linux distributions (32/64-bit) starting with kernel 2.6.x

This driver package includes the following components:

  • DELIB USB driver
  • DELIB Ethernet driver
  • DELIB CLI

DELIB USB driver

Supports the following products:

  • NET-Series (via USB interface)
  • RO-USB-Series
  • BS-USB-Series
  • USB-Mini-Sticks
  • USB-Watchdog
  • USB-OPTION-8 / USB-RELAIS-8
  • USB-TTL-32 / USB-TTL-64

Note:

With the standard USB driver, you can access several USB products with different module IDs (for example one RO-USB and one USB-OPTOIN-8). Therefore, no additional driver installation is required.

If you want to access several USB products with the same module ID (for example one USB-OPTOIN-8 and one USB-RELAIS-8), you have to install additionally the Linux FTDI driver. The FTDI driver can be found at http://www.ftdichip.com.

 

DELIB Ethernet driver

Supports the following products:

  • NET-Series (via Ethernet Interface)
  • RO-ETH-Series
  • RO-ETH/LC-Series
  • BS-ETH-Serie
  • ETH-OPTION-8 / ETH-RELAIS-8
  • ETH-TTL-64

DELIB CLI

With the DELIB CLI (Command Line Interface) for Linux it is possible so controll all I/O’s over the command-line.

 

DELIB - Sample-Sources - Installer (approx. 10 MB)
Sample programs for different programming languages (Also in DELIB Setup included)
Download

Sample programs for different programming languages (Also in DELIB Setup included)

  • C (Microsoft Visual C++ 6.0, Borland C)
  • C++ (Microsoft Visual C++ 6.0)
  • C# (Microsoft Visual C# 2008 to 2015)
  • Delphi (Borland Delphi 7)
  • VB (Microsoft Visual Basic 6.0)
  • VB.NET (Microsoft Visual Basic 2008 to 2015)
  • Java (Java native interface)
  • Java.dll (Ethernet protocol for ethernet products)

 

Download

Hardware-Updates (Firmware)
Flash files for the DT-Flasher
Download

The flash files can also be downloaded directly in the DT-Flasher.

This package contains firmware files for the following products:

STARTER-series:

  • USB-MINI-Sticks
  • USB-8-er Opto/Relay
  • Ethernet 8-er Opto/Relay
  • USB-TTL I/O
  • Ethernet-TTL I/O

BS-series:

  • BS-CAN Module
  • BS-ETH Module
  • BS-USB Module
  • BS-SER Module

RO-series Interfaces:

  • RO-USB
  • RO-SER
  • RO-ETH
  • RO-ETH/LC
  • RO-CAN

RO-series I/Os:

  • AD / DA Module
  • CNT8 / CNT-IGR
  • O8-R8 Time module
  • PT100
  • Stepper2

Development accessories

  • USB Controller 8
  • USB Watchdog Stick

16 pol connector

Required to connect your application to the DEDITEC module

  • Type: Wago Kontakttechnik 713-1108/037-000
  • Pluggable female connector with locking mechanism
  • 100 % malfunction protected
  • 1-wire connection for all types of conductors up to 1.5mm²

DIN rail connector

The DIN-Rail connector is a single BUS segment which allows the connection to other modules. It is clipped into the DIN-rail and plugged into the side of an existing DIN-Rail connector.

  • DIN-Rail Bus Connectors
  • Connection of a NET or COS module
  • For extension of the NET or COS bus system
  • 1 piece

Optional input voltage range 5V..15V DIL

With this option the input voltage range of the BS-OPTOIN modules can be reduced to 5..15V. We will always modify 8 channels per ordered quantity.

  • Input voltage range 5V to 15V AC / DC
  • 8 channels

Optional input voltage range 48V (30V..50V) DIL

With this option the input voltage range of the NET-OPTOIN modules can be reduced to 5..15V. We will always convert 8 channels per ordered quantity.

  • Input voltage range 30V to 50V AC / DC
  • 8 channels

Power supply 24V/2A for DIN rail mounting

The DR-4524 from Mean Well is a 48W rail mount power supply for industrial applications. It offers protection against short circuit, overload, overvoltage and overheating.

  • Input voltage range: 85V… 264V AC / 120V DC … 370V DC
  • Output voltage: 24V DC
  • Output current: 2A
  • Nominal power: 48W

230V din rail relay

With this 230V relay can you reduce your voltage to 12V. The 12V signal can be read by our opto coupler inputs.

  • Max switching current 250V AC
  • Coil current 4,5mA

DIN rail connector

The DIN-Rail connector is a single BUS segment which allows the connection to other modules. It is clipped into the DIN-rail and plugged into the side of an existing DIN-Rail connector.

  • DIN-Rail Bus Connectors
  • Connection of a NET or COS module
  • For extension of the NET or COS bus system
  • 1 piece

16 pol connector

Required to connect your application to the DEDITEC module

  • Type: Wago Kontakttechnik 713-1108/037-000
  • Pluggable female connector with locking mechanism
  • 100 % malfunction protected
  • 1-wire connection for all types of conductors up to 1.5mm²

Strain relief plate for 16 or 18 pole Wago connectors

A strain relief plate that can be mounted centrally between the conductor entries facilitates the plugging and unplugging process and allows easy access to the actuation openings even when wired.

  • Type: Wago / 713-127
  • Suitable for 16/18 pole female connectors with conductor connection
  • Mating and unmating aid for Wago connectors
  • Strain relief of the individual wired conductors
  • Easy mounting

Tool for wiring connectors

Serves to open and close the clamp contacts on the Wago connectors.
  • Type: Wago Kontakttechnik 734-231

DIN Rail

Top-hat rail for mounting our control technology modules.

  • Top-hat rail according to DIN EN 50022
  • Type: Phoenix Contact / 1208131
  • Dimensions in mm: 450 x 35 x 7.5 (L x W x D)

Reviews

There are no reviews yet.

Be the first to review “NET-DEV module with 16 optocoupler inputs”

Your email address will not be published. Required fields are marked *