2/4 relay control via USB-BUS

0 customer reviews

ab  105,32

Availability: In Stock SKU: USB-MINI-REL2 USB-MINI-REL4 Category:

The USB-MINI-REL2/4 stick is the smallest output module in our product range. It is available with either 2 or 4 NO outputs. The relays are suitable for low switching capacities up to max. 1A

  • 2/4 relay outputs NO (36V DC / 1A / 24 W)
  • Galvanic isolation between contact and coil: 1.0 kV RMS /1 min
  • Timeout Output protection

Relay outputs

This product uses signal relays with normally open (NO) function. They are suitable for smaller switching capacities and achieve well over 5 million switching cycles. The electrical isolation between input and output circuit is up to 1.0kV.

 

Timeout protection

This module has a time definable timeout protection function. If communication with the module is interrupted in the event of an error, the outputs are automatically switched off and connected systems are thus protected.


Software and control

Our DELIB driver library, which is included with the product, makes it easy to address the product via our API.

 

We offer support for the following programming languages:

  • C
  • C++
  • C#
  • VB
  • VBA
  • VB.Net
  • Java
  • Delphi
  • LabVIEW

We offer support for the following operating systems:

  • Windows 10 (32bit/64bit)
  • Windows 8/8.1 (32bit/64bit)
  • Windows 7 (32bit/64bit)
  • Windows Vista (32bit/64bit)
  • Windows XP (32bit/64bit)
  • Windows Server 2003 (32bit/64bit)
  • Windows 2000
  • Linux

Corresponding programming examples can be found in the “Software” section of the products or are included on the driver CD.


General

Supply voltage +5V (via USB-Port)
Interface USB 2.0 / USB 1.1
Access speed Average access time from the PC to the module: 0.4 ms
(Calculated with 1000 accesses to the module via the DELIB driver library with the command DapiDoSet32)
Power consumption max. 100mA
LEDs Signals access to the USB stick
time-out function Automatic shutdown of the outputs in case of connection termination
Connection cable approx. 1,8m at 9 pin D-Sub socket
Operating temperature +10°C to +50°C
Dimensions 84.5 x 21 x 12.5/9.5 mm (without cable)

Relay outputs

Relay up to 1A • Typ: G6L1P5DC
• Property: 2 or 4x normally open contact (NO)
• Max. Switching voltage: 36V AC / DC
• Max. Switching current: 1 A AC / DC
• Max. Switching capacity: 24 W
• Galvanic isolation between contact and coil: 1.0 kV RMS /1 min
• Mechanical life: up to 5 million switching cycles

Additional information

Weight N/A
Number of digital outputs

2, 4

 

 

 

General information on the ICT tool

We have developed the new ICT tool to make commissioning our products as easy and straightforward as possible.
This tool combines all the important functions of our old programs, such as the Configuration Utility, Module Demo and DT-Flasher, in one.
With the ICT tool, you can now easily configure, test, diagnose, flash and debug our products.
In the following chapters, we would like to introduce you to our new all-in-one software in more detail.

Module selection

Here you can integrate your modules into the ICT tool by clicking on the “+” symbol, so that you can then configure or test them.


Start screen

Here you can find some important information about your selected module.
In addition, you can display the manual of the module as PDF or HTML version here.
Under “Show module IDs” you can call up all available module IDs. This ID is needed to integrate our products into your software projects.


ICT Treeview

In the treeview on the left side of the program window, you can see the respective forms that are supported by your module.
With a click you can then display this form in the right part of the program and perform possible configurations or tests.

Configuration

USB module configuration

Products with USB interface are automatically recognized by the DELIB driver library. Configuration is only required if several identical USB products are to be used on the same system.

 


Multiple identical USB modules on one system

Each of our USB products is delivered with the module number “0”. When using more than one USB module on a PC / system, a new module no. must first be assigned to each additional module. This assignment is done with the help of our DT-ICT-Tool. Only in this way can a unique assignment take place on the software side. The module number is permanently stored in the product. Up to 255 identical modules can be used on one system.


Nähere Details zur Ansteuerung sowie einige Programmierbeispiele, finden Sie im Bereich Programmierung.

General Handling

DapiOpenModule
This function opens a particular module.

DapiOpenModule

 

Description

This function opens a specific module

 

Definition

ULONG DapiOpenModule(ULONG moduleID, ULONG nr);

 

Parameters

moduleID=Specifies the module to be opened (see delib.h)
nr=Specifies which one (in case of several modules) should be opened.
nr=0 -> 1st module
nr=1 -> 2nd module

 

Return-Value

handle=Corresponding handle for the module
handle=0 -> module was not found

 

Comment

The handle returned by this function is needed to identify the module for all other functions.

 

Programming example

// Open USB module
handle = DapiOpenModule(RO_USB1, 0);
printf(“handle = %x\n”, handle);
if (handle==0)
{
// USB module was not found
printf(“Modul konnte nicht geöffnet werden\n”);
return;
}

DapiCloseModule
This command closes an opened module.

DapiCloseModule

 

Description

This command closes an open module.

 

Definition

ULONG DapiCloseModule(ULONG handle);

 

Parameters

handle=This is the handle of an open module

 

Return-Value

None

 

Programming example

// Close module
DapiCloseModule(handle);

DapiGetLastError
This function returns the last registered error. If an error has occurred, it must be deleted with DapiClearLastError(), otherwise any call of DapiGetLastError() will return the "old" error. If multiple modules are used, the use of DapiGetLastErrorByHandle() is recommended.

DapiGetLastError

 

Description

This function returns the last detected error. If an error occurred, it must be cleared with DapiClearLastError(), otherwise any call to DapiGetLastError() will return the “old” error.
If more than one module should be used, it is recommended to use DapiGetLastLastErrorByHandle().

 

Definition

ULONG DapiGetLastError(void);

 

Parameters

None

 

Return-Value

Error Code
0=no error. (see delib_error_codes.h)

 

Programming example

BOOL IsError()
{
unsigned char msg[500];
unsigned long error_code = DapiGetLastError();

if (error_code != DAPI_ERR_NONE)
{
DapiGetLastErrorText((unsigned char*) msg, sizeof(msg));
printf(“Error Code = 0x%x * Message = %s\n”, error_code, msg);

DapiClearLastError();

return TRUE;
}

return FALSE;
}

DapiGetLastErrorByHandle
This function returns the last registered error of a particular module (handle). If an error has occurred, it must be deleted with DapiClearLastErrorByHandle(), otherwise any call of DapiGetLastErrorByHandle() will return the "old" error.

DapiGetLastErrorByHandle

 

Description

This function returns the last detected error of a specific module (handle). If an error occurred, it must be cleared with DapiClearLastErrorByHandle(), otherwise any call to DapiGetLastErrorByHandle() will return the “old” error.

 

Definition

ULONG DapiGetLastErrorByHandle(ULONG handle);

 

Parameters

handle=This is the handle of an open module

 

Return-Value

Error Code
0=no error. (see delib_error_codes.h)

 

Programming example

BOOL IsError(ULONG handle)
{
unsigned long error_code = DapiGetLastErrorByHandle(handle);

if (error_code != DAPI_ERR_NONE)
{
printf(“Error detected on handle 0x%x – Error Code = 0x%x\n”, handle, error_code);

DapiClearLastErrorByHandle(handle);

return TRUE;
}

return FALSE;
}

DapiGetLastErrorText
This function reads the text of the last registered error. If an error has occurred, it must be cleared with DapiClearLastError(), otherwise every call of DapiGetLastErrorText() returns the "old" error. Definition

DapiGetLastErrorText

 

Description

This function reads the text of the last detected error. If an error occurred, it must be cleared with DapiClearLastError(), otherwise any call to DapiGetLastErrorText() will return the “old” error.

 

Definition

ULONG DapiGetLastErrorText(unsigned char * msg, unsigned long msg_length);

 

Parameters

msg = Buffer for the text to be received
msg_length = Length of the text buffer

 

Programming example

BOOL IsError()
{
unsigned char msg[500];
unsigned long error_code = DapiGetLastError();

if (error_code != DAPI_ERR_NONE)
{
DapiGetLastErrorText((unsigned char*) msg, sizeof(msg));
printf(“Error Code = 0x%x * Message = %s\n”, error_code, msg);

DapiClearLastError();

return TRUE;
}

return FALSE;
}

DapiClearLastError
This function deletes the last error registered with DapiGetLastError().

DapiClearLastError

Description

This function deletes the last error registered with DapiGetLastError().

 

Definition

void DapiGetLastError(void);

 

Parameters

None

 

Return value

None

 

Example program

BOOL IsError()
{
unsigned char msg[500];
unsigned long error_code = DapiGetLastError();

if (error_code != DAPI_ERR_NONE)
{
DapiGetLastErrorText((unsigned char*) msg, sizeof(msg));
printf(“Error Code = 0x%x * Message = %s\n”, error_code, msg);

DapiClearLastError();

return TRUE;
}

return FALSE;
}

DapiClearLastErrorByHandle
This function deletes the last error of a particular module (handle), which was registered with DapiGetLastErrorByHandle().

DapiClearLastErrorByHandle

 

Description

This function deletes the last error of a particular module (handle), which was registered with DapiGetLastErrorByHandle().

 

Definition

void DapiClearLastErrorByHandle(ULONG handle);

 

Parameters

handle=This is the handle of an opened module.

 

Return value

None

 

Example program

BOOL IsError(ULONG handle)
{
unsigned long error_code = DapiGetLastErrorByHandle(handle);

if (error_code != DAPI_ERR_NONE)
{
printf(“Error detected on handle 0x%x – Error Code = 0x%x\n”, handle, error_code);

DapiClearLastErrorByHandle(handle);

return TRUE;
}

return FALSE;
}

DapiGetDELIBVersion
This function returns the installed DELIB version.

DapiGetDELIBVersion

 

Description

This function returns the installed DELIB version.

 

Definition

ULONG DapiGetDELIBVersion(ULONG mode, ULONG par);

 

Parameters

mode=Mode with which the version is read (must always be 0).
par=This parameter is not defined (must always be 0).

 

Return-Value

version=Version number of the installed DELIB version [hex]

 

Programming example

version = DapiGetDELIBVersion(0, 0);
//With installed version 1.32 version = 132(hex)

DapiOpenModuleEx
This function opens a specific module with ethernet interface.The particularity of this command is,that parameters like IP-address, portnumber and the duration of the timeout can be specified. The opening of the module is independent of the DELIB Configuration Utility settings.

DapiOpenModuleEx

 

Description

This function specifically opens a module with an Ethernet interface. The parameters IP address, port number and the duration of the timeout can be determined.
The module is opened independently of the settings made in the DELIB Configuration Utility.

 

Definition

ULONG DapiOpenModuleEx(ULONG moduleID, ULONG nr, unsigned char* exbuffer, 0);

 

Parameters

moduleID = Specifies the module to be opened (see delib.h)
nr = Specifies which one (in case of several modules) is to be opened
nr = 0 -> 1st module
nr = 1 -> 2nd module
exbuffer = buffer for IP address, port number and duration of the timeout

 

Return-Value

handle = Corresponding handle for the module
handle = 0 -> module was not found

 

Comment

The handle returned by this function is required to identify the module for all other functions.
This command is supported by all modules with Ethernet interface.

 

Programming example

// Open ETH-Module with parameter

DAPI_OPENMODULEEX_STRUCT open_buffer;

strcpy((char*) open_buffer.address, “192.168.1.10”);
open_buffer.portno = 0;
open_buffer.timeout = 5000;

handle = DapiOpenModuleEx(RO_ETH, 0, (unsigned char*) &open_buffer, 0);
printf(“Module handle = %x\n”, handle);

Digital output functions

DapiDOSet1
This is the command to set a single output.

DapiDOSet1

 

Description

This command sets a single output.

 

Definition

void DapiDOSet1(ULONG handle, ULONG ch, ULONG data);

 

Parameters

handle=This is the handle of an open module
ch= Specifies the number of the output to be set (0 .. )
data= Specifies the data value to be written (0 / 1)

 

Return-Value

None

 

Requirements

The following SW feature bits must be supported by the module:

 

DAPI_SW_FEATURE_BIT_CFG_DO

The following conditions for the transfer parameters must be met:

maxCh = DapiSpecialCommand(handle, DAPI_SPECIAL_CMD_GET_MODULE_CONFIG, DAPI_SPECIAL_GET_MODULE_CONFIG_PAR_DO, 0, 0)
maxCh > ch

DapiDOSet8
This command sets 8 digital outputs simultaneously.

DapiDOSet8

 

Description

This command sets 8 digital outputs simultaneously.

 

Definition

void DapiDOSet8(ULONG handle, ULONG ch, ULONG data);

 

Parameters

handle=This is the handle of an open module
ch= Specifies the number of the output from which writing is to start (0, 8, 16, 24, 32, ..)
data=Specifies the data values to be written

 

Return-Value

None

DapiDOSet16
This command sets 16 digital outputs simultaneously.

DapiDOSet16

 

Description

This command sets 16 digital outputs simultaneously.

 

Definition

void DapiDOSet16(ULONG handle, ULONG ch, ULONG data);

 

Parameters

handle=This is the handle of an open module
ch= Specifies the number of the output from which writing is to start (0, 16, 32, ..)
data=Specifies the data values to be written

 

Return-Value

None

DapiDOSet32
This command sets 32 digital outputs simultaneously.

DapiDOSet32

 

Description

This command sets 32 digital outputs simultaneously.

 

Definition

void DapiDOSet32(ULONG handle, ULONG ch, ULONG data);

 

Parameters

handle=This is the handle of an open module
ch= Specifies the number of the output from which writing is to start (0, 32, 64, ..)
data=Specifies the data values to be written

 

Return-Value

None

 

Programming example

// Write a value to the outputs
data = 0x0000ff00; // outputs 9-16 are set to 1
DapiDOSet32(handle, 0, data); // Chan Start = 0
printf(“Write to outputs data=0x%x\n”, data);
printf(“key for further\n”);
getch();
// —————————————————-
// Write a value to the outputs
data = 0x80000000; // Output 32 is set to 1
DapiDOSet32(handle, 0, data); // Chan Start = 0
printf(“Write to outputs data=0x%x\n”, data);
printf(“key for further\n”);
getch();
// —————————————————-
// Write a value to the outputs
data = 0x80000000; // Output 64 is set to 1
DapiDOSet32(handle, 32, data); // Chan Start = 32
printf(“Write to outputs data=0x%x\n”, data);
printf(“key for further\n”);
getch();

DapiDOSet64
This command is to set 64 digital outputs.

DapiDOSet64

 

Description

This command sets 64 digital outputs simultaneously.

 

Definition

void DapiDOSet64(ULONG handle, ULONG ch, ULONGLONG data);

 

Parameters

handle=This is the handle of an open module
ch= Specifies the number of the output from which writing is to start (0, 64, ..)
data=Specifies the data values to be written

 

Return-Value

None

DapiDOClrBit32
With this command you can change the states of outputs to 0 without changing the states of the neighboring outputs.

DapiDOClrBit32

 

Description

This command can be used to switch outputs selectively to 0 without changing the states of adjacent outputs.

 

Definition

void DapiDOClrBit32(uint handle, uint ch, uint data);

 

Parameters

handle = This is the handle of an open module
ch = Specifies the number of the output from which writing is to start
data = Specifies the data value to be written (up to 32 bits)

 

Return-Value

None

 

Comment

Only the bits with a value of 1 in the data parameter are considered by the command.

 

Programming example

data = 0x1; // Output 0 would be changed to 0. The states of outputs 1-31 won’t be changed
DapiDOSetBit32(handle, 0, data);

data = 0xf; // Outputs 0-3 would be changed to 0. The states of outputs 4-31 won’t be changed
DapiDOSetBit32(handle, 0, data);

data = 0xff; // Outputs 0-7 would be changed to 0. The states of outputs 8-31 won’t be changed
DapiDOSetBit32(handle, 0, data);

data = 0xff000000; // Outputs 23-31 would be changed to 0. The states of outputs 0-21 won’t be changed
DapiDOSetBit32(handle, 0, data);

DapiDOSet1_WithTimer
This function sets a digital output (ch) to a value (data - 0 or 1) for a specified time in msec.

DapiDOSet1_WithTimer

 

Description

This function sets a digital output (ch) to a value (data – 0 or 1) for a certain time in ms.

 

Definition

void DapiDOSet1_WithTimer(ULONG handle, ULONG ch, ULONG data, ULONG time_ms);

 

Parameters

handle=This is the handle of an open module
ch= Specifies the number of the output to be set (0 .. )
data= Specifies the data value to be written (0 / 1)
time_ms=Specifies the time in which the output is set [ms].

 

Return-Value

None

 

Comment

This command is supported by all output modules of the NET series as well as by our RO-O8-R8 module.
This command loses its validity if it is overwritten with other values.
If you want to deactivate the command, it must be overwritten with time_ms=0.

 

Programming example

DapiDOSet1_WithTimer(handle, 2, 1, 1000);
//Setting channel 2 for 1000msec to 1

DapiDOSetBit32
With this command you can change the states of outputs to 1 without changing the states of the neighboring outputs.

DapiDOSetBit32

 

Description

This command can be used to switch outputs selectively to 1 without changing the states of adjacent outputs.

 

Definition

void DapiDOSetBit32(uint handle, uint ch, uint data);

 

Parameters

handle = This is the handle of an open module
ch = Specifies the number of the output from which writing is to start
data = Specifies the data value to be written (up to 32 bits)

 

Return-Value

None

 

Comment

Only the bits with a value of 1 in the data parameter are considered by the command.

 

Programming example

data = 0x1; // Output 0 would be changed to 1. The states of outputs 1-31 won’t be changed
DapiDOSetBit32(handle, 0, data);

data = 0xf; // Outputs 0-3 would be changed to 1. The states of outputs 4-31 won’t be changed
DapiDOSetBit32(handle, 0, data);

data = 0xff; // Outputs 0-7 would be changed to 1. The states of outputs 8-31 won’t be changed
DapiDOSetBit32(handle, 0, data);

data = 0xff000000; // Outputs 23-31 would be changed to 1. The states of outputs 0-21 won’t be changed
DapiDOSetBit32(handle, 0, data);

DapiDOReadback32
This command reads back the 32 digital outputs.

DapiDOReadback32

 

Description

This command reads back the 32 digital outputs.

 

Definition

ULONG DapiDOReadback32(ULONG handle, ULONG ch);

 

Parameters

handle=This is the handle of an open module
ch= Specifies the number of the output from which the read back is to be performed (0, 32, 64, ..)

 

Return-Value

Status of 32 outputs.

DapiDOReadback64
This command reads the current PWM frequency of the module

DapiDOReadback32

 

Description

This command reads back the 32 digital outputs.

 

Definition

ULONG DapiDOReadback32(ULONG handle, ULONG ch);

 

Parameters

handle=This is the handle of an open module
ch= Specifies the number of the output from which the read back is to be performed (0, 32, 64, ..)

 

Return-Value

Status of 32 outputs.

Block diagram USB-MINI-REL2

USB-MINI-REL2

Manual

Manual for USB-Mini-Sticks
Hard- and Software-description
Download

DELIB driver library

Manual of the DELIB driver library
Documentation of all functions for the driver library
Download
  • Windows 10, 8, Vista, 7, XP, 2000 andLinux
  • Moduel open/close functions
  • Digital inputs: reading 1 / 8 / 16 / 32 / 64 bit
  • Digital outputs: Write 1 / 8 / 16 / 32 / 64 bit
  • A/D Lesen: read, read_volt, read_mA, A/D Modus einstellen
  • D/A schreiben: write, write_volt, write_mA, D/A-Modus einstellen
DELIB (64-bit) driver library for Windows
For Windows 11/10, Windows 7, Windows 8, Vista, XP and 2000
Download

Installation file for the 64 bit DELIB driver library.

The following operating systems are supported:

64 bit

  • Windows 11/10 x64
  • Windows 7 x64
  • Windows 8 x64
  • Windows Server 2012 x64
  • Windows Server 2008 x64
  • Windows Vista x64
  • Windows XP x64
  • Windows Server 2003 x64

Included software

  • DT-Flasher x64
    Software to update DEDITEC module to the latest version
  • DELIB Configuration Utility x64
    Set configuration of module addresses
  • DELIB Module Config x64
    Configuration of module-specific settings
  • CAN Configuration Utility x64
    Set configuration of CAN modules
  • DELIB Module Demo x64
    Enables manual switching of a module
  • DELIB Command Line Interface x64
    Enables the execution of DELIB commands in the command line
  • Watchdog Configuration Utility x64
    Set configuration of a watchdog stick
DELIB (32-bit) driver library for Windows
For Windows 11/10, Windows 7, Windows 8, Vista, XP and 2000
Download

Installation file for the 32-bit version of the DELIB driver library.

The following operating systems are compatible:
32-Bit

    • Windows 11/10
    • Windows 7
    • Windows 8
    • Windows Server 2012
    • Windows Server 2008
    • Windows Vista
    • Windows XP
    • Windows Server 2003

64-Bit

  • Windows 10 x64
  • Windows 7 x64
  • Windows 8 x64
  • Windows Server 2012 x64
  • Windows Server 2008 x64
  • Windows Vista x64
  • Windows XP x64
  • Windows Server 2003 x64

Included software

  • DT-Flasher
    Software to update DEDITEC module to the latest version
  • DELIB Configuration Utility
    Set configuration of module addresses
  • DELIB Module Config
    Configuration of module-specific settings
  • CAN Configuration Utility
    Set configuration of CAN modules
  • DELIB Module Demo
    Enables manual switching of a module
  • DELIB Command Line Interface
    Enables the execution of DELIB commands in the command line
  • Watchdog Configuration Utility
    Set configuration of a watchdog stick

Attention:

With this version of the driver library, only 32-bit applications can be created, which can then be run on 32- and 64-bit systems.

DELIB driver library for Linux (32/64-bit)
For 32/64-bit Linux distributions starting with kernel 2.6.x
Download

DELIB driver library for Linux distributions (32/64-bit) starting with kernel 2.6.x

This driver package includes the following components:

  • DELIB USB driver
  • DELIB Ethernet driver
  • DELIB CLI

DELIB USB driver

Supports the following products:

  • NET-Series (via USB interface)
  • RO-USB-Series
  • BS-USB-Series
  • USB-Mini-Sticks
  • USB-Watchdog
  • USB-OPTION-8 / USB-RELAIS-8
  • USB-TTL-32 / USB-TTL-64

Note:

With the standard USB driver, you can access several USB products with different module IDs (for example one RO-USB and one USB-OPTOIN-8). Therefore, no additional driver installation is required.

If you want to access several USB products with the same module ID (for example one USB-OPTOIN-8 and one USB-RELAIS-8), you have to install additionally the Linux FTDI driver. The FTDI driver can be found at http://www.ftdichip.com.

 

DELIB Ethernet driver

Supports the following products:

  • NET-Series (via Ethernet Interface)
  • RO-ETH-Series
  • RO-ETH/LC-Series
  • BS-ETH-Serie
  • ETH-OPTION-8 / ETH-RELAIS-8
  • ETH-TTL-64

DELIB CLI

With the DELIB CLI (Command Line Interface) for Linux it is possible so controll all I/O’s over the command-line.

 

DELIB - Sample-Sources - Installer (approx. 10 MB)
Sample programs for different programming languages (Also in DELIB Setup included)
Download

Sample programs for different programming languages (Also in DELIB Setup included)

  • C (Microsoft Visual C++ 6.0, Borland C)
  • C++ (Microsoft Visual C++ 6.0)
  • C# (Microsoft Visual C# 2008 to 2015)
  • Delphi (Borland Delphi 7)
  • VB (Microsoft Visual Basic 6.0)
  • VB.NET (Microsoft Visual Basic 2008 to 2015)
  • Java (Java native interface)
  • Java.dll (Ethernet protocol for ethernet products)

 

Datasheets

Datasheet relay (product: USB-MINI-REL2)
Technical description of the signal relay G6L
Download

DEDITEC driver CD

DEDITEC Driver CD with many helpful tools and manuals for commissioning your DEDITEC products.

  • DELIB driver library for Windows
  • Test and configuration software
  • Manuals
  • Data sheets
  • Example programs for C++, C#, VB, VB.Net, Delphi, LabVIEW

8-times relay powermodule (switching capacity 40V/10A), which can be controlled by relays/opto-couplers

The MOD-REL8_10A has eight changeover relays with a switching capacity of 48V/10A AC or 30V/8A DC. It can be used as additional power stage for our digital output modules. The normally open contacts of a digital output module, e.g. a RO-USB-REL16, are simply connected in parallel to the inputs of this power stage. Additionally this module requires a power supply of 24V DC.

  • Power stage for all digital output modules
  • 8 change-over contact relay (CO) / 48V / 10A AC or. 30V / 8A DC
  • 24V power supply
  • Pluggable terminal strips for the connection wiring
  • Potential-free inputs (no control voltage required)

USB watchdog stick with 2 relays for shift operations

This USB-WATCHDOG-STICK monitors your operating PC or server and can reset the hardware independently in case of a program crash. Simply integrate the function of the Watchdog Stick into your application. As soon as a timeout occurs and the watchdog stick is no longer periodically reset, the two relay outputs are switched through. With an appropriate connection cabling, for example, the PC reset could be activated, an external SMS modem can send warnings or a connected siren signals an alarm. With the help of our free configuration tool, you can define how the relays should switch in case of an error.

  • USB 2.0 / USB 1.1 interface
  • Watchdog function
  • Monitoring your control PC or server
  • Timeout times adjustable from 10ms to 10h
  • Windows Watchdog API
  • 2 NO contact relay (NO)
  • Connection cable with DSUB9 socket (approx. 1.8m)

12V din rail relay

PLC interface for limiting continuous currents up to 10A, consisting of basic terminal with screw connection and pluggable miniature relay. Mountable on NS 35/7.5 mounting rail.

  • Nominal voltage: 230V AC / 220V DC
  • Switching voltage: 250 V AC/DC
  • 1 changeover contact
  • Reverse polarity protection, freewheeling diode
  • LED for voltage indication
  • Phoenix Contact, 2967617, PLC-RSC- 12DC/21HC

24V din rail relay

PLC interface for limiting continuous currents up to 10A, consisting of basic terminal with screw connection and pluggable miniature relay. Mountable on NS 35/7.5 DIN rail.

  • Nominal voltage: 24V AC/DC
  • Switching voltage: 250 V AC/DC
  • 1 changeover contact
  • Reverse polarity protection, freewheeling diode
  • LED for voltage indication
  • Phoenix Contact, 2967633, PLC-RSC- 24UC/21HC

Reviews

There are no reviews yet.

Be the first to review “2/4 relay control via USB-BUS”

Your email address will not be published. Required fields are marked *